Autoridades

Dr. Leonel Fernández Reyna
Presidente de la República Dominicana

Dr. Rafael Alburquerque
Vicepresidente de la República Dominicana

Lic. Josefina Pimentel
 Ministra de Educación

Lic. Minerva Vincent, M. A.
Viceministra de Educación,
Encargada de Asuntos Técnicos Pedagógicos

Lic. Giselle Félix
Viceministra de Gestión Administrativa
Índice:

Primera quincena 4

Propósitos 5

Lengua Española 6
1. Lectura: texto narrativo.
2. Vocabulario, ortografía y producción.
3. Estudio de la lengua.
4. Literatura.
5. Taller de escritura.

Trabajo:

Ciencias Sociales 18
1. Teoría del comercio exterior.
2. La balanza de pagos.
3. El papel del Estado en la economía.
4. Los gastos públicos.

Trabajo: Las migraciones laborales.

Educación Artística 28
1. Organización del entorno.

Trabajo: El trabajo artoanal.

Ciencias de la Naturaleza 32
1. La física relativa.
2. La física cuántica (I).
3. La física cuántica (II).
4. La física nuclear.
5. Aportes de la física moderna.

Trabajo: Una competencia desentrenada.

Educación Física 44
1. La xilografía.

Trabajo: Actividades manuales.

Matemáticas 48
1. Ecuaciones de la tangente y la normal.
2. Teorema del valor medio.
3. Valores críticos de una función.
4. Puntos de inflexión.
5. Diferencial de una función.

Trabajo: Trabajo y precisión.

Actividades de evaluación 60

Segunda quincena 66

Propósitos 67

Lengua Española 68
1. Lectura: texto narrativo.
2. Vocabulario, ortografía y producción.
3. Estudio de la lengua.
4. Literatura.
5. Taller de escritura.

Trabajo: El trabajo necesario.

Lenguas Extranjeras: Francés 80
- Expremer la possession par la préposition de.
- Expremer le possession par l'adjectif possessif.
- Expremer la possession par être à + nom de personne.

Travail: C'est le produit de mon travail.

Ciencias Sociales 86
1. El turismo y sus tipos.
2. La oferta turística de la República Dominicana.
3. El ecoturismo en la República Dominicana.
4. Efectos del turismo en la República Dominicana.

Trabajo: Capacitación laboral.

Educación Cívica 96
1. La cultura.
2. La sociedad de consumo.

Trabajo: La triple jornada.

Ciencias de la Naturaleza: 102
1. Las partículas elementales.
2. El núcleo atómico.
3. La estructura electrónica.
4. La radiactividad.

Trabajo: El fin justifica los medios.

Matemáticas 112
1. Integral indefinida.
2. Cálculo de integrales.
3. Aproximación de áreas.
4. Cálculos de áreas usando integrales.
5. Integración numérica.

Trabajo: La integración en el trabajo.

Matemáticas (Educación Comercial) 124
1. Los bancos.
2. Las operaciones bancarias.

Trabajo: La expansión de la banca.

Actividades de evaluación 130
Autoevaluación 136
Respuestas de la autoevaluación 143

© Santillana, S.A.
Propósitos de la 1era. quincena

<table>
<thead>
<tr>
<th>Conceptuales</th>
<th>Procedimentales</th>
<th>Actitudinales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revisar las características textuales del memorando.</td>
<td>Producir memorandos previamente planificados.</td>
<td>Expresar valores personales acerca de la importancia del trabajo en el desarrollo personal y colectivo.</td>
</tr>
<tr>
<td>Dominar los latinismos usuales en el derecho dominicano.</td>
<td>Emplear los latinismos usuales en el derecho dominicano.</td>
<td></td>
</tr>
<tr>
<td>Dominar el uso de palabras que se escriben unidas o separadas.</td>
<td>Emplear correctamente palabras que se escriben unidas o separadas.</td>
<td></td>
</tr>
<tr>
<td>Dominar las estructuras de coherencia y de cohesión textual.</td>
<td>Reconocer y clasificar las estructuras de coherencia y de cohesión textual.</td>
<td></td>
</tr>
<tr>
<td>Conocer la vida y la obra de Silvina Ocampo.</td>
<td>Comentar un texto de Silvina Ocampo.</td>
<td></td>
</tr>
<tr>
<td>Aprender los conceptos sobre el comercio exterior.</td>
<td>Aprender a trabajar con los mapas temáticos.</td>
<td>Pensar en la importancia de la capacitación.</td>
</tr>
<tr>
<td>Identificar las formas de ingreso del Estado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analizar la forma en que el Estado utiliza los recursos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conocer en qué consiste el urbanismo.</td>
<td>Clasificar edificios según sus funciones.</td>
<td>Valorar el trabajo artesanal.</td>
</tr>
<tr>
<td>Saber cómo se clasifican los edificios según sus funciones.</td>
<td>Hacer una cartera con retazos de pantalones viejos.</td>
<td>Valorar los espacios urbanos que están conocidos para el bienestar del ser humano.</td>
</tr>
<tr>
<td>Conocer algunas características del urbanismo dominicano.</td>
<td>Entender los fenómenos físicos cuando los cuerpos se mueven a grandes velocidades.</td>
<td>Valorar que las generalizaciones hechas a la física clásica sale del sentido común.</td>
</tr>
<tr>
<td>Conocer los fundamentos y las leyes de la física moderna.</td>
<td>Entender el comportamiento de los cuerpos cuando sus dimensiones son muy pequeñas.</td>
<td></td>
</tr>
<tr>
<td>Conocer las aplicaciones de las leyes de la física moderna en los equipos tecnológicos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conocer el grabado en relieve.</td>
<td>Elaborar una plancha matriz.</td>
<td>Valorar las actividades manuales.</td>
</tr>
<tr>
<td>Conocer en qué consiste la plancha matriz.</td>
<td>Grabar en relieve utilizando la plancha matriz.</td>
<td></td>
</tr>
<tr>
<td>▶ Conocer los puntos críticos y de inflexión de una curva. ▶ Conocer las diferenciales de las variables de una función.</td>
<td>▶ Determinar máximos y mínimos relativos y puntos de inflexión de una curva.</td>
<td>Valorar el papel de las matemáticas en la vida.</td>
</tr>
</tbody>
</table>
El trabajo y la vida

Contenido conceptual y procedimental
1. Lectura: texto narrativo.
 1.1 Atenor Jugada.
2. Vocabulario, ortografía, producción.
 2.1 Latinismos utilizados en el derecho dominicano.
 2.2 Palabras unidas o separadas.
 2.3 La redacción del memo-rando.
3. Estudio de la lengua.
 3.1 La estructura textual.
4. Literatura.
 4.1 Anillo de humo.
5. Taller de escritura.
 3.1 Distinguir razonamientos demostralivos de razonamiento dialéctico.

Saber hacer: Actividades del taller de escritura.

Contenido actitudinal
Trabajo: Valoriza de manera personal la importancia del trabajo.

Tiemas transversales: Trabajo

El trabajo cambia la vida

Pocas personas saben que la gran transformación que vive hoy la sociedad dominicana comenzó hace poco más de un siglo con la introducción de las primeras máquinas modernas, detrás de las cuales vinieron otras máquinas y modos de operarlas, otras formas de organización comercial e industrial, otros modos de organizar las fuerzas armadas y gestionar el Estado, así como otras ideas acerca de la evolución del pensamiento científico.

Con la urbanización y la incipiente industrialización empezaron a cambiar los estilos de vida, la política y la cultura. El uso del tiempo experimentó uno de los primeros cambios. Al vivir en las ciudades, los dominicanos tuvieron que aprender a sujetarse a horarios más rígidos obligados por las disciplinas de las burocracias estatales, comerciales e industriales.

Frank Moya Pons
(dominicano) (adaptación)

- Escribe un texto en el que expliques de qué manera la necesidad de ajustarte a los horarios de trabajo y a las exigencias de la vida laboral fue transformando tu vida a medida que crecías.
¿Qué sabes del tema?

1. Responde.
 - Explica qué es un memorando y cuál es su función.

 - Escribe una oración con cada uno de los siguientes latinismos.
 sub lege

 sui géneris

Planifica tu trabajo

1. Subraya en las oraciones del siguiente texto los elementos que funcionan como factores cohesivos. Determina en cada caso el tipo de factor.

 Los cocineros son personas que han recibido un entrenamiento particular en el campo de la culinaria. Algunos de ellos han comenzado incluso sus estudios desde muy jóvenes.

 Según tus respuestas a los ítems anteriores, marca con una ☑ los conceptos y procedimientos que necesitas aprender en esta unidad:

 - Definición del memorando.
 - Latinismos usados en el derecho dominicano.
 - Cohesión y coherencia.

 - Partes del memorando.
 - Palabras unidas o separadas.
 - El razonamiento demostrativo.

 - Redacción del memorando.
 - La estructura textual.
 - Vida y obra de Silvina Ocampo.

Mapa conceptual

El memorando

Funciones:
- Anunciar decisiones.
- Informar fechas y motivos de reuniones.
- Hacer amonestaciones y reconocimientos escritos.

Redacción:
- Eligir palabras de uso común.
- Escribir oraciones cortas.
- Tener en cuenta al receptor.
- Preferir la voz activa.
1 Lectura: texto narrativo

1.1 Atenor Jugada

A tenor Jugada nunca hizo cosa distinta a encontrarse con la desgracia. Parecía que la tuviese enredada desde chicuito y la cargase con una inocencia más tenaz que su resignación. Cuando comprendió que ya no sería famoso como cantante, que los temas que decía inventar habían sido grabados años antes por personas a quienes visitó primero la inspiración, se le dio por ser mecánico. Cómo desmontó carburadores y malarmó turbinas resolviendo a golpes de martillo lo que no cedía a su paciencia o a su intuición, es asunto que sólo podría decir Alberto Tirado, de quien era ayudante.

La mecánica de Jugada terminó abruptamente un mediodía, con la caja de velocidades de un destartalado Chevrolet 23 sobre una pierna. De allí lo levantaron, más para que silenciara sus irrefrenables alaridos e impresciones, que por la gravidad dada al asunto, y volvió al barrio arrastrando un pie cubierto de yeso, apoyándose en un bastón de guayacán.

Nunca sabremos si fue el yeso, o el inicialmente torpe uso del bastón, o algún sentimiento no exteriorizado en su rostro antes moldeable a las más ligeras sensaciones, o una decisión secreta, pero lo innegable es que cuando Jugada volvió a estar con nosotros sentados en el pretil, bajo la luz del poste, el único del barrio salvado de las certeras piedras de los hijos de Rosa Pinto, ya no fue más el mismo. Siempre que lo contamos, no falta quien pregunta que quién era el mismo. Pero basta conocer al distinto para no olvidar que ése que se sentaba con dificultad en el pretil, dejando estirada la pierna del pie enyesado y recostando a un lado su bastón cuando se cansaba de pintar líneas sobre la tierra, ése, ya no era Atenor Jugada, o era otro que comenzábamos a conocer.

El, que fue pura verba, se tornó un hombre callado, de ojos apagados, y apenas nos decía una que otra noche, cuando no se metía en el Laurina a repartir películas de Clavilazo o Pedro Infante, nos decía "a mí me jodió la vida".

Sin repelencia y de verdad verdad nunca entiendimos, apenas y medio, al final, ese final por el cual empieza la más nímia referencia a Jugada, qué quería decir con esa vaina de "a mí me jodió la vida".

Cuando yo me rompi la pata se me dañó la movida con Pontecorvo, el italiano que tiene enredada la ciudad con su cámara accione y el poco de fusileros. Él me había dicho que debía presentarme a las seis de la mañana y que tal vez servía para tenerle el caballo a Marlon Brando, cuando él se baja, solo, sin escolta (¡qué cojones!) a hablar en esa playa desierta con el negro Evaristo que se sublevó y tiene el blanquero muer- to de miedo.
Después de la lectura

- Escribe V o F según el enunciado sea falso o verdadero:

 - Escribe V o F según el enunciado sea falso o verdadero:
 - Atenor Jugada era el nombre de un boxeador.
 - Los hijos de Rosa Pinto solían romper los bombillos del alumbrado.
 - Antes del accidente, Atenor Jugada era bastante conversador.
 - En el lugar de los hechos se estaba filmando una película.

Pero qué va, a mí me persigue la de malas, preciso un día antes se me vino encima la caja del Chevrolet con todos los piñones, y la madre, eso me dolió, pero más me dolió cuando voy yo todo preocupado porque a lo mejor el italiano ha tenido que suspender su película por culpa mía y qué va, el man está fresco y me dice que sí todavía tengo el bastón y el yeso me llamará para una película de los milagros de la virgen de Fátima.

Eso es barro que a uno puedan reemplazarlo y confundirlo con cualquiera, yo que nunca he confundido a Sofía Loren con Ana Maguani, y eso que las he visto apenas dos veces en mi vida, una en la vespertina del Laurina, y otra en mi álbum de los caramelos Artistas. Pero a la larga estuvo bien porque siempre, hasta en las películas, quieren que uno salga de sirviente, y como en esos días pasaron en el Laurina La Batalla de Argel, la película anterior de ese italiano, yo me la vi enterita y así para sacarme la tristeza le mandé una carta y le dije que se quedara con su cine ridículo que yo no trabajaba sino en La Batalla de Argel y que para lo de la virgen de Fátima se buscare otro imbécil.

Roberto Burgos Cantor
(colombiano) (fragmento)

ACTIVIDADES

Comprensión global del texto

- Completa las siguientes oraciones con los datos del texto:
 - Atenor Jugada era un hombre que quería ser
 - Albertico Tirado se dedicaba a la profesión de
 - El italiano Pontecorvo se dedicaba a

Análisis de la expresión

- Ubica en el texto las palabras abruptamente e imprecaciones y escoge de la siguiente lista las que correspondan a sus síntomas teniendo en cuenta el contexto en que aparecen ambas.
 - repentinamente – maldiciones
 - fuertemente – alabanzas
 - cuidadosamente – ruegos
 - timidamente – intimidaciones

Análisis de la organización

- La primera parte del texto está narrada en tercera persona y la segunda en primera persona del singular. Explica las diferencias que encuentres entre los puntos de vista del narrador en ambas partes del texto.
- Compara el léxico y la sintaxis empleados en ambas partes del texto y deduce una conclusión que explique la intención del autor al escribir su texto de esta manera.

Opinión y juicio

- ¿Qué intención crees que animó a Roberto Burgos Cantor a tomar un personaje popular como protagonista de su texto? Explica tu respuesta.
- ¿Qué piensas sobre la actitud de Atenor Jugada ante el trabajo? Explica tu respuesta.
- ¿Consideras que la historia de Atenor Jugada es realista o piensas que es demasiado imaginaria? Explica tu respuesta.

2. Vocabulario, ortografía y producción

Lee y descubre

- Observa las palabras destacadas en el texto e indica si se podrían separar o unir, según el caso y si conservan en cada cambio el mismo sentido.

Dieciséis ingleses envenenados

La señora Prudencia Linero, que había hecho tantos amigos viejos abordo, que había cuidado niños mientras sus padres bailaban y hasta le había cosido un botón de la guerrera al primer oficial, los encontró de pronto amigos y distinutos. El espíritu social y el calor humano que le permitieron sobrevivir a las primeras nostalgias en el sopor de trópico, habían desaparecido. Los amores etéreos de altamar terminaban a la vista del puerto. La señora Prudencia Linero, que no conocía la naturaleza voluble de los italianos, pensó que el mal no estaba en el corazón de los otros sino en el suyo, por ser ella la única que iba entre la muchedumbre que regresaba.

Gabriel García Márquez (colombiano) (fragmento)

2.1 Latinismos utilizados en el derecho dominicano

Todas las áreas profesionales tienen una terminología particular. Por ejemplo, la mayoría de los términos el derecho son de origen latino. Algunos de los más usados entre los abogados dominicanos son los siguientes:

- Vox populi: creencia general.
- Vice versa: al contrario, por lo contrario.
- Versus: contra.
- Veni, vidi, vici: "llegué, vi, hice" (Julio César).
- Ut infra: como abajo, véase más adelante.
- Supra: arriba. Se emplea en los píes de páginas para referirse a lugares anteriores.
- Sui generis: género propio.
- Sub júdice: bajo juez.
- Sub lege: bajo ley.
- Summum: lo máximo, lo sumo.
- Status: situación, posición.
- Sine qua non: sin la cual no.
- Habeas corpus: acto de libertad que manda al guardián ante el tribunal para que la legalidad de la detención pueda ser probada.
- Ipso facto: por el hecho mismo.
- Quórum: número mínimo de miembros necesarios para que una asamblea pueda actuar válidamente.

1. Escribe una oración con cada uno de estos latinismos.

2. Escribe cinco latinismos relacionados con el derecho.

2.2 Palabras unidas o separadas

Existen en nuestra lengua palabras que deben escribirse juntas, palabras que se escriben separadas, y otras que admiten las dos grafías, según su contexto. Veamos algunos ejemplos:

- **Palabras que deben escribirse juntas**: Además, contigo, vademécum, adiós, conmigo, viceversa, adrede, santiamén, zigzag.
- **Palabras que deben escribirse separadas**: a medias, a propósito, de rodillas, por tanto, a menos, a veces, de veras, en fin, a menudo, con todo, de noche, en medio, a posteriori, de pronto, ex profes, so pena, a priori, de repente, por consiguiente, sobre todo.
- **Palabras que pueden escribirse juntas o separadas**: aprisa, a prisa, de prisa, enseguida, en seguida, exabrupto, ex abrupto

1. En tu cuaderno, construye oraciones con los siguientes términos:
 - aprisa
 - de rodillas
 - conmigo
 - contratiempo

2. Escribe correcto o incorrecto frente a cada una de las siguientes expresiones:
 - adrede
 - de balde
 - con tigo
 - a cuestas
 - de mí
 - ha llegado
 - a menos
 - sobretodo
 - entrelazada

© Santillana, S.A.
2.3 La redacción del memorando

Por tratarse de una comunicación interna de una empresa, la redacción del memorando debe ser clara, breve y precisa. También debe emplearse para su elaboración un formato previamente diseñado por la institución. Dicho formato debe ser funcional y práctico; incluye, generalmente, el encabezado que identifica a la organización y unos espacios destinados a ser diligenciados por el emisor del memorando.

Para redactar un memorando, es necesario que el emisor se exprese de una manera simple y directa. Con este propósito, es importante:

- **Elegir palabras de uso común**, fáciles de entender para todos.
- Escribir **oraciones relativamente cortas** y separadas.
- Tener en cuenta al **receptor** del mensaje.
- Hablar sobre el papel tal como se habla en persona con el destinatario.

El uso de la voz **activa**. El uso de la voz activa es de gran utilidad a la hora de redactar un memorando. La voz activa contribuye a mantener al lector. Veamos dos versiones de un fragmento del Memorando 1:

- **Redacción en voz pasiva:**

 Los ingresos de la compañía ABC serán aumentados mediante el lanzamiento de un nuevo cereal.

- **Redacción en voz activa:**

 Mediane el lanzamiento de un nuevo cereal, la compañía de alimentos ABC aumentará sus ingresos.

Como se ve, la voz activa hace que la información se presente de forma clara y atractiva, lo que contribuye a otorgarle la importancia que desea el emisor.

Al redactar un memorando, conviene evitar:

- Expresarse en primera persona del singular.
- Incluir información que no venga al caso.
- Presentar información que no pueda ser comprobada.
- Adornar el mensaje.
- Dar rodeos o emplear redundancias.
- Utilizar expresiones ambiguas.

1. **Imagina** que diriges una empresa y que tienes que redactar un memorando sobre un tema relacionado con el trabajo realizado por uno de tus empleados. **Elabora** el borrador de tu texto en base a la siguiente información:

 a) Fecha.
 b) Nombre del destinatario y cargo que desempeña.
 c) Tu nombre y el cargo que desempeñas.
 d) Asunto o tema a tratar en el memorando.
3 Estudio de la lengua

3.1 La estructura textual

Se llama texto a una sucesión de oraciones que presentan entre ellas algún tipo de dependencia mutua, es decir, que no aparecen de forma aleatoria.

A veces la estructura de un texto resulta evidente; por ejemplo, en las diferentes partes del menú de un restaurante, con sus respectivos encabezamientos. Otras veces es necesario realizar un trabajo meticoloso para sacarla a la luz, como en el conjunto de relaciones que entran en juego en una obra literaria. En cualquier caso, la tarea del análisis textual consiste en identificar y analizar los rasgos lingüísticos que hacen que la sucesión de oraciones sea coherente, y la de identificar y definir los lazos que unen un texto, es decir, la cohesión.

Para comprender cómo está estructurado un texto, es necesario entender la diferencia entre coherencia y cohesión y los factores que permiten que la cohesión se dé.

Diferencia entre cohesión y coherencia

La cohesión se refiere a los lazos y marcas formales que se utilizan en un texto para ligar una información nueva con una información vieja.

Por ejemplo, el pronombre personal ella es una marca formal que establece una relación semántica con alguien o con algo que se ha mencionado COD anterioridad.

La cohesión de un texto se logra, entonces, cuando se establece una relación de significados entre secuencias de proposiciones que hace que la interpretación de una proposición dependa de la interpretación de otra anterior y, a veces, posterior al texto. Ejemplo: En el diálogo inicial hay una relación de cohesión cuando a la pregunta ¿Cristina, tienes plata? se responde No. En este caso se omite la información no tengo plata, pues esta información ya se ha enunciado y se sobrentiende.

En el segundo intercambio no hay cohesión entre las oraciones, pero sí existe sentido: se comprende que la respuesta incluye No puedo ir al banco, pues tengo que estudiar.

Así mismo, en el tercer intercambio, tampoco hay cohesión pero, a diferencia del anterior, se pueden dar varias interpretaciones. La respuesta Dile a Juan Carlos se podría interpretar como: —Pregúntale a Juan Carlos si él cree que sea peligroso que vayas sola. —Es peligroso que vayas sola, por eso es mejor que le pidas a Juan Carlos que te acompañe. —Pídele la plata a Juan Carlos.

La coherencia no está necesariamente relacionada con marcas formales, pues se refiere a la función que cumplen los contenidos del texto: dan información, ejemplifican, sintetizan, enumeran, definen...

Lee y descubre

1. Lee el siguiente diálogo:
 A: ¿Cristina, tienes plata?
 B: No.
 A: Hay que ir al banco.
 B: Tengo que estudiar.
 A: ¿Será que me arriesgo a ir sola?
 B: Dile a Juan Carlos.

2. Responde en tu cuaderno.
 - ¿Considersas que el diálogo anterior es coherente? ¿Por qué?
 - ¿Crees que hay información relevante que se omite en el texto y que dificulta su comprensión? ¿Qué tipo de información?
 - Escribe un párrafo en el cual expliques la situación presentada en el diálogo, de modo que todos los elementos de la información se hagan explícitos.

Factores cohesivos

Existen varios tipos de factores cohesivos:

Relaciones conjuntivas. Lo que se va a decir está explícitamente relacionado con lo que se ha dicho antes, a través de nociones de oposición, resultado y tiempo. Ejemplos: • Gloria me rogó que me quedara pero yo me salí temprano. • Esta foto no me gusta, en cambio esa sí.

Correferencia. Este factor tiene que ver con los rasgos que no pueden ser interpretados semánticamente sin referirse a algún otro rasgo del texto. Se reconocen dos clases de relaciones:

Anaforicas, que tienen su referente en un punto anterior del texto: Ejemplos: • Llegó un pedido el viernes. Ya lo revisé. • Me encontré con Luisa en donde el médico. Ella estaba allí porque se fracturó una mano.
1. **Subraya** en cada una de las siguientes oraciones los elementos que funcionan como factores cohesivos. **Determina**, en cada caso, el tipo de factor.

- Los domadores son personas que se dedican a amaestrar animales salvajes. A veces, ellos son atacados por los animales que están amaestrando.

- Recogí flores de todas las clases para adornar la mesa. Pero decidió poner en el florero sólo las rosas.

- Todo parecía indicar que sería un día normal, sin embargo, no fue así.

- **Dicen que una cucharilla en el cuello de una botella sin terminar de champán impide la pérdida de las burbujas cuando se guarda la botella hasta el día siguiente dentro de la nevera. Incluso se apuntilla a veces que la cucharilla debe ser de plata...** Ante una afirmación semejante, el gastrónomo con formación científica se queda en ascuas: es cierto, la cucharilla cierra parcialmente el cuello de la botella, pero no hasta el extremo de evitar la fuga de gas.

2. **Reconstruye** la siguiente secuencia y **escribe** un párrafo coherente y cohesivo.

a. No obstante nadie había visto ninguno durante meses.

b. Le pareció ver una sombra entre los arbustos.

c. Pedro le había hablado de ellos.

d. Juan miró por la ventana.

e. ¿Se trataría de un zorro?
4.1 Anillo de humo

Recuerdo el primer día que viste a Gabriel Bruno. Él caminaba por la calle vestido con su traje azul, de mecánico; simultáneamente, pasó un perro negro que al cruzar la calle, fue atropellado por un automóvil. El perro, aullando porque estaba herido, corrió junto al paredón de la vieja quinta, para guarecerse. Gabriel lo ultimó a pedradas. Desdeñaste el dolor del perro para admirar la belleza de Gabriel.

—¡Degenerado! —exclamaron las personas que te acompañaban.

Amaste su perfil y su pobreza.

Una tarde de Navidad, en la quinta de tu abuela, repartieron en las caballerizas (donde ya no habías caballos sino automóviles), ropa y juguetes para los niños del barrio. Gabriel Bruno y una intempestiva lluvia aparecieron. Alguien dijo:

—Ese chico tiene quince años; no tiene edad para venir a esta fiesta. Es un sinvergüenza y, además, un ladrón. El padre por cinco centavos mató al panadero. Y él mató un perro herido, a pedradas.

Gabriel tuvo que irse. Lo miraste hasta que desapareció bajo la lluvia.

Gabriel, hijo del guardabarreras que mató no sé por cuántos centavos al panadero, para ir de su casa al almacén pasaba todos los días, con la esperanza tal vez de verte, por un callejón que separaba las dos quintas: la quinta de tu tía y la quinta de tu abuela materna, donde vivías.

Sabías a qué hora Gabriel pasaba, galopando en su caballo oscuro, para ir al almacén o al mercado, y lo esperabas con el vestido que más te gustaba y con el pelo atado con la más bonita de las cintas. Te reclinabas sobre el alambrado en posturas románticas y lo llamabas con tus ojos. Bajaba del caballo, saltaba el zanjón para acercarse a Eulalia y a Magdalena, tus amigas, que no lo miraban. ¿Qué presagio podía tener para ellas su pobreza? El traje de mecánico de Gabriel las obligaba a pensar en otros varones, mejor vestidos.

Hablabas a Eulalia y a Magdalena de Gabriel Bruno el día entero, en vano. Ellas no conocían los misterios del amor.

Todos los días, a la hora de la siesta, corría sola al callejón. De lejos brillaba la cinta de su pelo como un barco de vela en miniatura o como una mariposa: la veía reflejada en la sombra. Eras la mera prolongación de tu sentimiento: el cirio que sostiene la llama. A veces, en el camino, se desataba el moño; entonces, colocando la cinta entre tus dientes, te recogías el pelo y volvías a atarlo, arrodillada en el suelo.

Como tenía que haber un pretexto para que pudieras hablar con Gabriel inventaste el pretexto de los cigarillos: llevabas plata en tu bolsillo, se la daban a Gabriel para que fuera al almacén a comprarlos. Después fumabas, mirándose en los ojos. Gabriel sabía hacer anillos con el humo y te los soblaba en la cara. Reías. Pero estas escenas, tan parecidas a las escenas de amor, iban penetrando en tu corazón apasionado. Una vez unieron los cigarillos para encenderlos. Otra vez encendiste un cigarillo y se lo diste.
Era en el mes de enero. Jubilosas las chicharras cantaban con ruido de matraca. Cuando volviste a la casa, oíste que tu padre hablaba con tu madre. Era de ti que hablaban.

—Estaba en el callejón, con ese atorrante. Con el hijo del guardabarreras. ¿Te das cuenta? Con el hijo del que mató al panadero por cinco centavos. Hay que ponerla en penitencia.

—Son cosas de chica, no hay que hacer caso.

—Tiene once años ya—dijo tu madre.

No se atrevieron a decirte nada, pero no te dejaban salir sola. Fingías dormir la siesta y en vez de correr al callejón, después de almorzar, llorabas detrás de las persianas o del mosquitero.

Oíste, entre el casero y un ciclista, un diálogo insólito: hablaban de Gabriel y de ti. Dijeron que Gabriel se vanagloriaba en el almacén hablando de los cigarrillos que fumaban juntos. Decían que te había dicho palabras obscenas o con doble sentido.

Te escapaste a la hora de la siesta, corriste al cerro, para perder tu anillo. Gabriel pasó a la hora de siempre. Fuiste a tu encuentro.

—Vamos —le dijiste— a las vías del tren.

—¿Para qué?

—Se cayó mi anillo al cruzar las vías ayer cuando fui al río. Verdad y mentira salían juntas de tus labios.

Silvina Ocampo
(argentina)

ACTIVIDADES

1. Responde.
 - Explica el origen del desprecio que las personas sentían hacia Gabriel Bruno.

 __

 __

 __

 Explica el efecto que tiene el empleo de la segunda persona del singular empleado por el narrador del texto.

 __

 __

 __

 La relación que se establece entre Gabriel y la protagonista del relato es considerada como problemática por las demás personas. Explica por qué y expresa tu opinión respecto a la actitud que debió asumir la protagonista.

 __

 __

 __
5. Distinguir razonamientos demostrativos de razonamientos dialécticos

Para saber si estamos frente a un razonamiento demostrativo o uno dialéctico podemos hacer la siguiente pregunta:

- Partiendo de la suposición de que las premisas son verdaderas, ¿la conclusión tiene que ser verdadera?

Si la respuesta es sí, nos encontramos frente a un razonamiento demostrativo.

Si, en cambio, no estamos obligados a suponer que las premisas son verdaderas, pero quien las enuncia pretende que las premisas son generalmente reconocidas como verdaderas, entonces tenemos un razonamiento dialéctico.

1. **Indica** cuáles de los siguientes textos son razonamientos demostrativos y cuáles dialécticos. Para cada caso, **justifica** tu respuesta.

 a. Dado que todo cuerpo ocupa un espacio y que todos los seres humanos tienen un cuerpo, podemos concluir que todos los seres humanos ocupan un espacio en el universo.

 b. Los hombres no son sólo un cuerpo, pues, si lo fueran, la extinción del cuerpo implicaría la extinción de la vida. Pero los hombres tienen una vida eterna y, dado que el cuerpo muere, lo que del hombre permanece eternamente es aquella parte del hombre que no es cuerpo y que por esta razón tiene que existir.

2. **Identifica** en cada uno de los razonamientos anteriores las premisas.

 Indica:
 - Si las premisas empleadas son o no generalmente aceptadas.
 - Si compartes o no lo expuesto por cada una de las premisas.

 a)

 b)

© Santillana, S.A.
Saberes hacer

- En cada uno de los grupos de frases siguientes, escoge aquella con la que estés más de acuerdo. A continuación, escribe un razonamiento dialéctico con el cual intentes persuadir al lector de que la frase que escogiste es cierta.

 a).
 - El fútbol es el mejor de los deportes.
 - El fútbol es el peor de los deportes.
 - Hay deportes mejores que el fútbol.
 - Cada deporte tiene su gracia y por eso no hay deportes mejores que otros.

 b).
 - Siempre es malo decir mentiras.
 - A veces es malo decir mentiras.
 - Nunca es malo decir mentiras.
 - A veces es indispensable decir mentiras.

 c).
 - Las novelas son obras mejor logradas que los cuentos.
 - La poesía es aburrida por definición.
 - La poesía es el género literario más complejo y más rico en expresividad.
 - La lectura educa más que la televisión.

Resumen

- Todas las áreas profesionales tienen una terminología particular. Por ejemplo, la mayoría de los términos el derecho son de origen latino.

- Existen en nuestra lengua palabras que deben escribirse juntas, palabras que se escriben separadas, y otras que admiten las dos grafías, según su contexto.

- La palabra memorando proviene del latín memorandum y significa literalmente: "algo que debe tenerse en la memoria". Por lo tanto, la finalidad de un memorando es comunicar algo que debe ser recordado.

- La tarea del análisis textual consiste en identificar y analizar los rasgos lingüísticos que hacen que la sucesión de oraciones sea coherente, y la de identificar y definir los lazos que unen un texto, es decir, la cohesión.

- Para comprender cómo está estructurado un texto, es necesario entender la diferencia entre coherencia y cohesión y los factores que permiten que la cohesión se dé.

- Llamamos razonamiento demostrativo al tipo de argumentaciones que prueban sus tesis de manera definitiva a partir de las premisas.
Comercio externo y finanzas

Contenido

Contenidos conceptuales y procedimentales

1. Teoría del comercio exterior.
 1.1 El comercio exterior y sus flujos.
 1.2 Resultados del comercio exterior.
2. La balanza de pagos.
 2.1 La balanza de pagos y su composición.
 2.2 Saldo de la balanza de pagos.
 2.3 El sector financiero.
3. El papel del Estado en la economía.
 3.1 Rol estatal y gasto público.
 3.2 Los ingresos del Estado.
4. Los gastos públicos.
 4.1 Inversión del gasto público.

Saber hacer: Interpretar mapas temáticos.

Contenido actitudinal

Trabajo: Las migraciones laborales.

Temas transversales: Trabajo

Las migraciones laborales

Las personas se mueven de una ciudad, región o país a otro lugar en la búsqueda de trabajo, ya sea de forma permanente o temporal. Cuando los desplazamientos con fines laborales se realizan de forma permanente, se habla de migraciones laborales. Las migraciones con fines exclusivamente laborales empezaron cuando en sus lugares de origen las personas no encontraban ocupación, o cuando las condiciones de trabajo en otras zonas eran más convenientes.

Las dominicanas y los dominicanos se han convertido en inmigrantes que viajan a otros países en la búsqueda de mejores condiciones laborales. Para facilitar la posibilidad de emigración, el gobierno dominicano ha firmado acuerdos migratorios con otros países, uno de los acuerdos migratorios más recientes ha sido firmado con España, en el cual, a solicitud del gobierno español, se tramitan a través de la Secretaría de Estado de Trabajo, contratos de trabajo para dominicanas y dominicanos.

- ¿Conoces información sobre las emigraciones dominicanas a España y otros países con fines laborales?
¿Qué sabes del tema?

1. Responde.
 - ¿Qué son los acuerdos comerciales?
 - ¿Cuáles son los principales países socios comerciales de la República Dominicana?
 - ¿Cuáles son los principales problemas que deben ser enfrentados por el gobierno dominicano?

Planifica tu trabajo

1. Selecciona el sector donde el Estado dominicano debe invertir mayores recursos.
 - [] Producción agrícola
 - [] Educación
 - [] Salud
 - [] Seguridad y defensa
 - [] Justifica tu respuesta.

Mapa conceptual

Comercio exterior

- Comprende dos flujos
 - Flujo de bienes y servicios
 - Flujo de capitales
- Se contabilizan en la balanza de pagos
 - Comercial
 - De capitales
- Genera
 - Déficit
 - Superávit
 - Se generan ingresos
- Posibilita el gasto público
 - Gasto corriente
 - Gasto de capital
- Ordinario
 - Extraordinario

Tipos de banca

- De emisión
- De especialización

Funciones

- Intermediación de crédito
- Intermediación de pagos

Fija tus metas. Planifica tu trabajo
1.1 El comercio exterior y sus flujos

El comercio exterior está constituido por el intercambio de bienes, servicios y capitales que cada país realiza con el resto del mundo. Es decir, es el conjunto de las exportaciones e importaciones de un país con el exterior. El comercio exterior de todos los países del mundo es lo que constituye el mercado mundial.

El desarrollo de los vínculos comerciales entre los países forma parte fundamental de las nuevas tendencias en las relaciones exteriores, en las que se plantea que lo más importante es el comercio bilateral o multilateral para profundizar los lazos comunes de cooperación y desarrollo.

Las diferencias geográficas, el clima, las riquezas naturales, las costumbres, determinan la especialización de cada país en su producción agrícola, industrial o manufacturera. Cada país o región se especializa en una serie de productos cuyos excedentes son intercambiados o comercializados por los productos excedentes de los demás países o regiones.

Ningún país, ni aun los más desarrollados, produce todo lo que necesita en bienes y servicios. Por ejemplo, los grandes productores de excedentes de petróleo son algunos países árabes, Venezuela, México y otros. Los grandes productores de excedentes de trigo son: Estados Unidos, algunos países europeos, Argentina y otros.

Cada país se ve obligado a exportar sus excedentes e importar lo que no produce y lo que produce de manera insuficiente para cubrir sus necesidades. Los países que han querido subsistir aislados del resto del mundo en sus relaciones comerciales han presentado atrasos y retrocesos con respecto a la economía mundial.

Por otra parte, el comercio exterior se estructura a través de las relaciones de poder entre los países. Así, unos países han sido especializados para producir determinados bienes y servicios que otros necesitan sin que estos países, necesariamente, sean productores tradicionales de determinados bienes.

El desarrollo de la ciencia y la tecnología y su aplicación directa a la producción de bienes, el transporte, la comunicación, entre otros factores, han generado en los últimos 30 ó 40 años un enorme crecimiento y expansión del comercio mundial.

El comercio exterior de bienes y servicios genera dos movimientos o flujos contrarios: un flujo de bienes y servicios y un flujo de dinero o monetario.

- **El flujo de bienes y servicios.** Comprende el conjunto de las exportaciones e importaciones de bienes y servicios.

- **El flujo monetario.** Es una consecuencia del flujo de bienes y servicios. Las exportaciones generan entradas (ingresos) monetarias al país exportador y las importaciones desde otros países generan salidas (egresos) de dinero hacia el exterior. Estos ingresos y egresos monetarios se efectúan en sentido contrario a las exportaciones e importaciones de bienes y servicios.

 Este flujo monetario es diferente del flujo monetario que produce el movimiento de importación y exportación de capitales entre los países.
1.2 Resultados del comercio exterior

Del balance o resultado de las exportaciones e importaciones de bienes, servicios y capitales depende la estabilidad de la economía de cada país. El intercambio de bienes, servicios y capitales de un país con el exterior puede tener dos resultados opuestos: un déficit o un superávit.

Estos hacen referencia a un desbalance, negativo o positivo, en el comercio exterior. Los ingresos de divisas son importantes, ya que éstos constituyen la garantía de que se puedan importar los bienes y servicios del mercado internacional.

Cuando los ingresos monetarios que recibe un país del exterior por sus exportaciones de bienes y servicios es mayor que los pagos (egresos) que debe realizar por las importaciones desde el exterior, el resultado es un saldo favorable o superávit.

El empleo que se puede hacer del dinero que ingresa a través del superávit es el siguiente:

- **Aumentar las reservas monetarias** (en moneda extranjera) del Banco Central.
- **Pagar deudas** contraídas con otros países.
- **Hacer inversiones** en el país y en el exterior.

Existe un déficit en el comercio exterior cuando el valor de las exportaciones (ingresos monetarios) es menor que el valor de las importaciones (pagos monetarios). Este déficit o saldo desfavorable significa que el país ha consumido más valor en bienes y servicios del que ha producido.

Para los países subdesarrollados o en desarrollo ese déficit significa el aumento de su deuda externa, ya que no se puede contar con el dinero para realizar los pagos o se ha de recurrir a fuentes de financiamiento para poder mantener a flote la economía.

Para poder mejorar la situación económica de los países en desarrollo, se les estimula a desarrollar una economía que se base en la exportación de bienes y servicios, de preferencia industrializados o semiindustrializados.

Sin embargo, países desarrollados, como los Estados Unidos de América, el cual tiene el mayor déficit en su balanza de bienes y servicios del mundo, mantienen su economía sólida debido a que los ingresos de capitales desde el exterior equilibran el déficit de su balanza de bienes y servicios.

Cuando a un país ingresan más capitales desde el exterior que los capitales que salen hacia el exterior, el resultado es un saldo favorable o superávit. En cambio, cuando ingresan al país menos capitales desde el exterior que los que salen al exterior existe un saldo desfavorable o déficit.

ACTIVIDADES

1. **Investiga** cuáles son los principales mercados de exportación para los productos dominicanos.
2.1 La balanza de pagos y su composición

La balanza de pagos es una contabilidad donde se registra y enumera la cantidad y el valor monetario de las exportaciones e importaciones de bienes, servicios y capitales que realiza un país con el resto del mundo.

Según cada país, existen diferentes formas de presentar la balanza de pagos, pero en general cada balanza de pagos está compuesta por tres balanzas: la balanza comercial, la balanza de servicios y la balanza de capitales.

En la República Dominicana a la balanza comercial y a la balanza de servicios juntas se les llama balanza de cuentas corrientes. En esta se registran también las donaciones que recibe el país del exterior y las remesas que envían los dominicanos y dominicanas residentes en el exterior.

- **Balanza comercial.** La balanza comercial es la parte de la balanza de pagos donde se registran y enumeran la cantidad y el valor monetario de las exportaciones e importaciones de bienes durante un año, así como el saldo correspondiente a ese año.

- **Balanza de servicios.** Es la parte de la balanza de pagos donde se registran y enumeran los nombres, la cantidad y el valor monetario de los servicios prestados al exterior (exportaciones de servicios) y los servicios recibidos del exterior (importaciones de servicios), así como su saldo correspondiente.

- **Balanza de capitales.** Es la parte de la balanza de pago que registra el movimiento de capitales entre un país y el exterior. Registra los ingresos de capitales provenientes del exterior y los egresos o capitales que salen del país hacia el exterior por conceptos de pagos, inversiones, repatriación de capitales, así como el saldo o resultado de este movimiento de capitales. En la balanza de capitales se registran además, los movimientos de la reserva del Banco Central.

2.2 Saldo de la balanza de pagos

El saldo de la balanza de pagos se obtiene sumando los saldos de la balanza comercial con los saldos de la balanza de servicios y el saldo de los capitales.

Una economía sana requiere de una balanza de pagos equilibrada. Esto significa que la suma de los saldos de la balanza comercial y la de servicios debe ser igual y de signo contrario al saldo de la balanza de capitales. O sea, que la suma de los saldos de las balanzas debe ser igual a cero.

Cuando los saldos de la balanza comercial y la de servicios (cuentas corrientes) sumadas arrojan un déficit, y este déficit no puede ser compensado por los capitales que ingresan al país y/o por las reservas monetarias del Banco Central, el país debe recurrir a préstamos extranjeros para equilibrar o igualar a cero la balanza de pagos.

Estos préstamos internacionales constituyen una de las fuentes principales del origen y crecimiento de la deuda externa, sobre todo en países en desarrollo como la República Dominicana.

Las remesas son los envíos de dinero que realizan las personas que viven en el extranjero a sus familiares o amigos que viven en el país. Las remesas se han convertido en una de las principales fuentes de ingreso del gobierno dominicano, siendo su valor en el año 2002 de 1,939 millones de dólares, más de dos veces el valor de las exportaciones nacionales para el mismo periodo (847.5 millones de dólares).
2.3 El sector financiero

El sector financiero del país lo componen las instituciones que participan del mercado monetario y de capitales. Estas instituciones pueden pertenecer al sector público o al privado.

Estas instituciones pueden ser: bancos de emisión, bancos comerciales y bancos especializados: bancos de desarrollo, bancos hipotecarios, asociaciones de ahorro y préstamos y asociaciones financieras.

Cuando las instituciones financieras deciden diversificar sus operaciones reciben el nombre de banca múltiple o multibanca.

Los bancos comerciales se clasifican en tres tipos principales:

- **Los bancos de emisión.** En la República Dominicana lo constituye el Banco Central, tiene la facultad exclusiva de emitir billetes de banco, de curso legal o de curso forzoso.

 Además, el Banco Central es una entidad reguladora del crédito y se encarga de mantener la estabilidad monetaria por medio de sus políticas económicas.

- **Los bancos comerciales.** Se les llama bancos de créditos ordinarios. Estos bancos realizan sus operaciones de créditos a un término muy breve en régimen de libre competencia. Sus operaciones principales son el depósito y el crédito.

 Los bancos comerciales son instituciones bancarias exclusivas en recibir depósitos a la vista, retirables mediante cheques y cuentas corrientes.

- **Los bancos especializados.** Se les denomina bancos de fomento, bancos de desarrollo, bancos de ahorro e inversión, bancos de créditos especiales, entre otros.

 La característica principal de los bancos especializados es el destino del crédito que otorgan y reciben su denominación de esta función.

Las **funciones básicas** de la banca comercial son:

- **Intermediación del crédito.** Hacen posible el financiamiento de inversiones mediante la concesión de créditos a los diferentes sectores de la economía, de manera particular a los sectores productivos.

- **Intermediación de los pagos.** Los bancos comerciales sirven de intermediarios a las empresas, el gobierno y los ahorrantes.

ACTIVIDADES

1. **Investiga** cuáles bancos ofrecen financiamiento para crear micro y pequeñas empresas o ampliar las actividades de las existentes, los requisitos para los préstamos y las tasas de interés cobradas sobre los préstamos.
3.1 Rol estatal y gasto público

El Estado es un agente de primer orden en la dinámica y desarrollo de la economía de los pueblos. Las diversas instituciones del Estado son grandes consumidoras de bienes y servicios y una fuente importante de empleos. Además, las inversiones del Estado en infraestructuras, salud y educación, y en otros proyectos sociales sirven de estímulo para dinamizar la economía. El Estado también es un agente regulator de la actividad económica y el encargado de trazar la política económica.

El presupuesto es el conjunto de gastos anuales que realizan las distintas instituciones estatales y las autónomas en la compra de bienes y servicios, en pagos de salarios y dietas, en inversiones públicas y otros. Cada institución del Estado prepara su programa de gastos, para lo cual el gobierno central debe estimar el monto de los ingresos necesarios.

Los salarios, dietas y otros, que devengan los empleados del Estado y los trabajadores que faenan en las obras del Estado, generan una demanda considerable de bienes y servicios en el comercio. Esta demanda incrementa los pedidos de los comerciantes a los productores e importadores, quienes a su vez, para satisfacer dicha demanda, aumentan la producción y las importaciones de bienes y servicios.

El aumento de la producción y el comercio generan, a su vez, nuevos empleos, los cuales crean nuevos gastos en bienes y servicios y, así sucesivamente, crecen la demanda global de bienes y servicios, la producción y la renta nacional. Esta cadena sucesiva y creciente de gastos e ingresos es lo que se denomina efecto multiplicador del gasto público.

El gasto público es el elemento financiero más idóneo para redistribuir la renta nacional. Con tal fin, son de esencial importancia los gastos sociales que realiza el gobierno en la salud, educación, asistencia médica, hospitales, medicamentos, en la seguridad social, en la protección de envejecientes y de niños y niñas, en la concesión de pensiones, entre otros. De esta forma el gobierno redistribuye los ingresos que recibe en mejorar la situación de los ciudadanos y ciudadanas para favorecer el desarrollo.

Aunque generalmente del Estado se benefician los sectores más influyentes, una parte importante de la renta nacional es redistribuida, a través del gasto público, entre los ciudadanos y ciudadanas de menores ingresos. Según su efecto sobre la economía, el gasto público puede ser clasificado en gastos corrientes y gastos de capital.

- **Los gastos corrientes.** Se utilizan para el funcionamiento de las instituciones del Estado y para la operatividad de los servicios públicos. Estos gastos incluyen compra de bienes y servicios, pago de salarios, dietas y otros, así como el pago de los intereses de la deuda externa e interna. Los gastos corrientes no son recuperables, simplemente se consumen.

- **Los gastos de capital.** Son los que se emplean en inversiones como construcciones de carreteras, puentes, parques nacionales, compra de edificios, solares y los pagos efectuados para amortizar el capital de la deuda externa e interna. Los gastos de capitales son inversiones, por eso no desaparecen como los gastos corrientes, algunos pueden sufrir desgastes, otros aumentan su valor y dejan beneficios.
3.2 Los ingresos del Estado

Los gastos anuales del Estado obligan al gobierno a planificar los ingresos necesarios para la ejecución de dicho presupuesto por año. En la economía moderna, dos fuentes de ingresos permiten financiar el gasto público: los ingresos ordinarios y los extraordinarios.

Los ingresos ordinarios. Son los que recauda el Estado en sus operaciones corrientes o normales, éstos son de dos clases: ingresos tributarios y no tributarios.

- Los ingresos tributarios son descuentos normales que se aplican a los ingresos de las personas e instituciones, a la propiedad y a los bienes y servicios y están constituidos por los impuestos directos y los impuestos indirectos. Los impuestos directos son pagados por las personas e instituciones que éstas puedan transferirlos a otras personas o instituciones. Los principales impuestos directos son sobre los ingresos e impuestos sobre el patrimonio. Los impuestos indirectos son los que se aplican a los bienes y servicios. La mayoría de estos impuestos deben ser pagados por los productores, comerciantes e importadores, pero son transferidos al consumidor. El más importante de estos impuestos es el ITBIS o impuesto al valor agregado, el cual en nuestro país es del 12%.

Otros impuestos indirectos son los aranceles o impuestos aduanales que deben pagar todas las mercancías que entran y salen del país. Otros impuestos son el AD-VALOREM, el impuesto selectivo a las bebidas y cigarillos y otros.

- Los ingresos no tributarios son impuestos ordinarios tales como: las tasas y compensaciones, las tasas con ingresos no tributarios que cobra el Estado, por peajes, multas, placas, cobro de mora o sea por impuestos dejados de pagar, así como el pago de las ganancias de las empresas públicas, financieras y no financieras. Las compensaciones son ingresos que percibe el Estado por deudas contraídas por el sector privado con el gobierno y del gobierno con el sector privado, cuya diferencia favorece al Estado.

Los ingresos extraordinarios. No suelen tomarse en cuenta para calcular el presupuesto porque no provienen de las operaciones corrientes del Estado, ya que pueden o no ingresar al país.

ACTIVIDADES

1. Clasifica los siguientes gastos, según sean corrientes o de capital.
 - Pago de la nómina de una empresa pública.
 - Construcción de una escuela.
 - Compra de una caja de papel.
 - Compra de una máquina de escribir.
 - Contratación de personal.
 - Compra de equipos médicos.
 - Compra de gasas y medicamentos.
4 Los gastos públicos

4.1 Inversión del gasto público

La propuesta para lograr el desarrollo económico y social del país que han hecho los gobiernos dominicanos ha sido a partir de entender la importancia de invertir en mejorar las condiciones de vida de la población, tratando de eliminar uno de los mayores problemas que la sociedad dominicana comparte con otras sociedades latinoamericanas: la pobreza y la brecha entre ricos y pobres. En el siguiente cuadro, se muestra la forma en que se ejecutó el gasto público en el periodo 1998-2002:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Servicios Generales</td>
<td>8,945.80</td>
<td>10,569.60</td>
<td>11,529.10</td>
<td>12,923.50</td>
<td>16,858.80</td>
</tr>
<tr>
<td>Servicios Sociales</td>
<td>15,244.60</td>
<td>18,987.40</td>
<td>22,530.30</td>
<td>29,400.20</td>
<td>32,394.00</td>
</tr>
<tr>
<td>Servicios Económicos</td>
<td>11,491.00</td>
<td>12,751.60</td>
<td>12,062.70</td>
<td>13,630.00</td>
<td>15,751.20</td>
</tr>
<tr>
<td>Servicios Financieros</td>
<td>3,438.80</td>
<td>3,971.00</td>
<td>4,341.50</td>
<td>8,358.50</td>
<td>8,845.80</td>
</tr>
<tr>
<td>Total General</td>
<td>39,120.20</td>
<td>46,279.60</td>
<td>50,463.60</td>
<td>64,312.20</td>
<td>73,849.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concepto</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servicios Generales</td>
<td>22.9%</td>
<td>22.8%</td>
<td>22.8%</td>
<td>20.1%</td>
<td>22.8%</td>
</tr>
<tr>
<td>Servicios Sociales</td>
<td>39.0%</td>
<td>41.0%</td>
<td>44.6%</td>
<td>45.7%</td>
<td>43.9%</td>
</tr>
<tr>
<td>Servicios Económicos</td>
<td>29.4%</td>
<td>27.6%</td>
<td>23.9%</td>
<td>21.2%</td>
<td>21.3%</td>
</tr>
<tr>
<td>Servicios Financieros</td>
<td>8.8%</td>
<td>8.6%</td>
<td>8.6%</td>
<td>13.0%</td>
<td>12.0%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir de datos de ONAPRES.

*Datos en millones de pesos.

La partida que ha concentrado durante este periodo el mayor porcentaje del gasto público lo ha sido la de servicios sociales (43.9%). En servicios sociales se incluyen: educación, salud, deportes y recreación, vivienda, asistencia social, trabajo, entre otras.

El gasto público se realiza a partir de las diferentes secretarías de Estado, las cuales en sus programas de actividades incluyen las partidas presupuestarias que van a ser sometidas al Poder Ejecutivo y luego al Congreso y que se plasmarán en la Ley de Presupuesto y Gastos Públicos.

Según datos del Banco Central de la República Dominicana (2003) la institución del gobierno central que durante el año 2002 recibió la mayor cantidad de desembolsos del presupuesto fue la Presidencia de la República, con 23.16% de los mismos, a esta siguieron en orden: Secretaría de Estado de Finanzas (22.37%), Secretaría de Estado de Educación (11.45%), Secretaría de Estado de Salud Pública y Asistencia Social (9.32%), Secretaría de Estado de Interior y Policía (7.38%).

A través de la Presidencia de la República se canalizan numerosos recursos financieros, muchos de los cuales se invierten en programas de desarrollo social y comunitario. Esta tendencia en nuestro país, es una de las razones por las cuales se cuestiona el papel paternalista de los gobiernos, los cuales utilizan el Estado como una forma de promoción personal, cuando se identifican las acciones de gobierno con las personas que las ejecutan –en este caso el Ejecutivo– y no con políticas públicas, de las cuales los gobernantes son ejecutores.

La inversión en el sector salud son una parte importante del gasto público.
Interpretar mapas temáticos

¿Qué es?
Para ubicar fenómenos, acontecimientos, datos o hechos en un espacio geográfico, se utilizan mapas temáticos. Estos mapas nos permiten ubicar fácilmente un lugar y relacionarlo con una información determinada. Por ejemplo, en un mapa de carreteras de la República Dominicana, podemos ubicar rápidamente para desplazarnos a un lugar determinado.

Los tipos de mapas temáticos pueden ser ilimitados. A modo de ejemplo, podemos hablar de mapas de carreteras, de vías marítimas y aéreas, de producción agrícola, de alfabetismo, de producción pesquera, etc.

¿Cómo se hace?
El procedimiento para interpretar un mapa temático es sencillo e incluye los siguientes pasos:

1. Leer atentamente el tema del mapa, que se encuentra en la parte superior de las convenciones, y ubicar el espacio geográfico que representa.
2. Leer, analizar e interpretar las convenciones que pueden ser representadas por dibujos, símbolos o colores.
3. Ubicar las convenciones en el mapa.
4. Anotar las conclusiones.

Hazlo tú

1. Identifica el tema del mapa, y el lugar geográfico representado.
2. Observa las convenciones y ubícalas en el mapa.
3. Responde a las siguientes preguntas:
 a. ¿Cuáles son las provincias más pobres de la República Dominicana?
 b. ¿Cuáles son las provincias menos pobres?
 c. ¿Cómo es la situación de Elías Piña en relación al resto del país?

Resumen

- El comercio exterior está constituido por el intercambio de bienes, servicios y capitales que cada país realiza con el resto del mundo. El comercio exterior de bienes y servicios genera dos movimientos: el flujo de bienes y servicios y el flujo monetario.
- El intercambio de bienes, servicios y capitales de un país con el exterior puede tener dos resultados opuestos: un déficit o un superávit. El empleo que se puede hacer del dinero que ingresa a través del superávit es el siguiente: aumentar las reservas monetarias, pagar deudas y hacer inversiones.
- La balanza de pagos es una contabilidad donde se registran y enumeran la cantidad y el valor monetario de las exportaciones e importaciones. Cada balanza de pagos está compuesta por tres balanzas: comercial, de servicios y de capitales.
- El sector financiero del país lo componen las instituciones que participan del mercado monetario y de capitales. Estas instituciones pueden ser: bancos de emisión, bancos comerciales y bancos especializados. Las funciones básicas de la banca comercial son: intermediación del crédito e intermediación de los pagos.
- El Estado es un agente de primer orden en la dinámica y desarrollo de la economía de los pueblos. El Estado también es un agente regulador de la actividad económica y el encargado de trazar la política económica. El presupuesto es el conjunto de gastos anuales que realizan las distintas instituciones estatales y las autónomas. El gasto público es el elemento financiero más idóneo para redistribuir la renta nacional. El gasto público puede ser clasificado en gastos corrientes y gastos de capital.
- En la economía moderna, dos fuentes de ingresos permiten financiar el gasto público: los ingresos ordinarios y los extraordinarios. Los ingresos ordinarios son los que recauda el Estado en sus operaciones corrientes o normales, éstos son de dos clases: ingresos tributarios y no tributarios.
Contenido

Contenidos conceptual y procedimental

1. Organización del entorno.
 1.1 Arquitectura y urbanismo.
 1.2 Las viviendas en Santo Domingo.

- Saber hacer: Cartera hecha de pantalones viejos.

Contenido actitudinal

Trabajo: El trabajo artesanal.

Temas transversales: Trabajo

El trabajo artesanal

Muchos dominicanos y dominicanas viven de la producción de obras de artesanía. Otros dominicanos y dominicanas viven de la comercialización de estas obras.

- ¿Te parece interesante la producción de artesanía en nuestro país? ¿Por qué?
¿Qué sabes del tema?

1. Cuando pasas por la calle, ¿te fijas en las casas y en los espacios por donde caminas?

2. La ciudad en la que vives o la ciudad a la que vas con frecuencia, ¿te parece agradable? Explica tu respuesta.

4. ¿Es importante que los espacios en los cuales vivimos los seres humanos sean agradables? ¿Por qué?

Planifica tu trabajo

1. Piensa en lo que sabes sobre el tema y en lo que debes aprender. Fija tus objetivos y planifica tu trabajo. Busca la información que necesitas para estudiar esta unidad.

Mapa conceptual

Organización del entorno: arquitectura y urbanismo

Clasificación de los edificios por sus funciones

Viviendas en Santo Domingo
La arquitectura y urbanismo son el arte y la ciencia de proyectar y construir espacios para el uso humano, combinando la funcionalidad con la belleza y el medio ambiente.

1.1 Clasificación de los edificios por sus funciones

Los edificios se pueden clasificar por sus funciones.

- **Edificios destinados a las prácticas religiosas**: capillas, iglesias, oratorios, monasterios.
- **Edificios destinados a la educación**: escuelas, universidades, bibliotecas.
- **Edificios destinados a la recreación**: clubes, polideportivos, cines, teatros.
- **Edificios destinados a la salud**: hospitales, clínicas, sanatorios, subcentros de salud.
- **Edificios de servicios**: centros comerciales, supermercados, gasolineras, bancos, talleres, farmacias.
- **Edificios institucionales**: oficinas públicas, ayuntamientos, correos, puertos, aeropuertos, policía, bomberos, cruz roja...

1.2 Las viviendas en Santo Domingo

Las viviendas de la Zona Colonial están concebidas según patrones de la casa española de la época, con un patio interior.

En la avenida República Argentina que bordea el Jardín Botánico, tenemos un ejemplo de viviendas aisladas en las que se integran el paisaje natural y los desniveles del terreno.

En la avenida Anacaona, la vivienda está concebida de forma colectiva en edificios altos, aprovechando el paisaje del Parque Mirador Sur, y el mar en el horizonte.
Saber hacer

Cartera hecha de pantalones viejos

Materiales:
Unos pantalones viejos, tijera, aguja e hilo.

1. **Cortar** piezas rectangulars de tela en buen estado de unos pantalones viejos de modo que, agrupadas, formen un rectángulo de 25 x 60 cm.

2. **Montar** las piezas y **remeter** los bordes cortados. Después **prender** y sobrehilar.

3. **Recortar** uno o dos de los bolsillos de parche con un margen de tela de 2 cm todo alrededor. **Remeter** este margen y **coser** el bolsillo a la tela rectangular.

4. **Doblar** por la mitad la tela de parche, con el derecho hacia dentro, **prender** y **coser** a pespunte por los bordes superiores y **rematar** formando dobladillos. Voltear la cartera del derecho.

5. Para hacer la banderola se corta la cinturilla del pantalón y se cose a la cartera. Con los retazos más pequeños de tela de los pantalones puede hacerse un monedero o un estuche para lápices.

Actividades

1. Responde.
 - ¿Cómo clasificas la vivienda en la que vives?

2. **Une** con una flecha cada uno de estos edificios con su función.

 Edificios
 - Un club
 - Oficina de correos
 - Supermercado
 - Escuela

 Funciones
 - Institutional
 - Educación
 - Recreación
 - Servicios

3. ¿Crees que nuestras ciudades están pensadas para los peatones? ¿Por qué?

Resumen

- **La arquitectura y el urbanismo** son el arte y la ciencia de proyectar y construir espacios funcionales y agradables para el ser humano.

- Los edificios según sus **funciones** pueden clasificarse en residenciales, edificios destinados a prácticas religiosas, a la educación o la recreación, a la salud, a los servicios y en edificios institucionales.

- En Santo Domingo podemos encontrar una preciosa zona antigua: la Zona Colonial, y viviendas en las que se combinan las construcciones agradables con el medio ambiente.

© Santillana, S.A.

Aplica y controla tu aprendizaje
La física moderna

Contenido

Contenidos conceptuales y procedimentales

1. La física relativa.
 1.1 Las limitaciones de la física clásica.
 1.2 Principio de relatividad de Galileo.
 1.3 Postulados de la relatividad especial.

2. La física cuántica (I).
 2.1 La teoría de Planck.
 2.2 El efecto fotoelecctrico.
 2.3 Los modelos atómicos.

3. La física cuántica (II).
 3.1 Las ondas de materia.
 3.2 El principio de incertidumbre.

4. La física nuclear.
 4.1 Síntesis histórica.
 4.2 La constitución del núcleo atómico.

5. Aportes de la física moderna.
 5.1 El reactor nuclear.

Saber hacer: Análisis a la llama

Contenido actitudinal: Trabajo: Una competencia desenfrenada.

Temas transversales: Trabajo

Una competencia desenfrenada

Albert Einstein se convirtió en una celebridad, por haber explicado el efecto fotoelecctrico. En una ocasión le preguntaron, unos periodistas curiosos, que cuáles serían las aplicaciones en la industria del descubrimiento hecho por él; simplemente él contestó que no tenía ni la menor idea.

El hecho de que había un fenómeno sin explicar, en la física, hizo que un hombre se dedicara intelectualmente, con determinación, a buscar una solución, sin saber si sería importante o no para la sociedad. Ese es el quehacer del científico. Los científicos, sin saber, y aun sabiendo, se sumergen en diversas campañas de investigación por el mero hecho de encontrar la solución al problema antes que los demás. Como Einstein, había muchos otros que trataban de resolver el mismo enigma. Por esa razón en el siglo XX las ciencias sufrieron una revolución en cadena, iniciando con la física, gracias al trabajo en conjunto de todos los científicos.

¿Qué beneficios puede obtener la sociedad si dedicas suficiente tiempo a un proyecto social?
¿Qué sabes del tema?

- ¿Qué fue la revolución científica del siglo XIX?

- ¿Cuáles fueron los aportes de Albert Einstein?

- ¿Qué has escuchado sobre la mecánica cuántica?

Planifica tu trabajo

1. Define los conceptos fundamentales de la física clásica:
 - Espacio:
 - Tiempo:
 - Masa:
 - Sistema de referencia inercial:
 - Transformaciones de Galileo:

2. Compara estas definiciones con las concepciones de la física moderna.

Mapa conceptual

La física moderna

generaliza los principios de
la física clásica

que

no explica el movimiento de cuerpos muy veloce

la relatividad especial

esuelve

no explica la mecánica de los cuerpos con dimensiones muy pequeñas

la mecánica cuántica

el problema del átomo y el núcleo atómico
1.1 Las limitaciones de la física clásica

La existencia de hechos y de fenómenos que no tienen una explicación lógica en el marco de una teoría, es decir, en los cuales los cálculos teóricos entran en contradicción con los resultados experimentales, es un precedente necesario y fundamental en el desarrollo de la ciencia, y en particular de la física, para la creación de una nueva teoría.

Dos grandes revoluciones han tenido lugar en la física a comienzos del siglo XX: la **teoría de la relatividad** y la **física cuántica**. Tanto la relatividad como la física cuántica representan generalizaciones de la física clásica.

La **relatividad** extiende el campo de aplicación de la Física a las regiones de las **altas velocidades**; la **Física cuántica** la extiende a las regiones de **dimensiones pequeñas**, atómicas.

1.2 Principio de relatividad de Galileo

Si un sistema de referencia es inercial, cualquier otro sistema de referencia que se mueva respecto del primero con velocidad constante será también un sistema de referencia inercial.

Supongamos que observamos el movimiento de la partícula de masa m situada en P desde dos sistemas de referencia inerciales O y O', tal como se representa en la figura de la izquierda. La posición de la partícula respecto del sistema O viene dada por el vector $\vec{r} = \vec{OP}$ mientras que para el sistema O' viene dada por el vector $\vec{r}' = \vec{O'P}$. Observemos que la posición de la partícula es relativa y, en consecuencia, también lo será la trayectoria, ya que esta no es más que la línea que resulta de unir los extremos de los vectores posición en los distintos instantes. Las posiciones según la figura vienen relacionadas por la ecuación:

$$2a \quad \vec{r} = \vec{OO'} + \vec{r}'$$

Si los dos sistemas coinciden en el instante $t = 0$, entonces $\vec{OO'} = \vec{V}_0 t$ y la ecuación $2a$ nos quedaría: $\vec{r} = \vec{r}' + \vec{V}_0 t$ en forma vectorial. Identificando componentes y suponiendo que el sistema O' se mueve en la dirección del eje Ox, nos quedaría:

$$2b \quad x = x' + v_{ox} t \quad y = y' \quad z = z' \quad t = t'$$

Las anteriores ecuaciones constituyen las **transformaciones de Galileo**. Notemos que el tiempo transcurre igual en los dos sistemas de referencia.

Las velocidades de la partícula respecto de los dos sistemas de referencia serán distintas, es decir, son magnitudes relativas, y obtendremos su relación derivando la ecuación $2a$:

$$2c \quad \frac{d\vec{v}}{dt} = \frac{d\vec{v}'}{dt} + \vec{V}_0$$

Sin embargo, la aceleración será una magnitud independiente de los sistemas de referencia, siempre que estos sean inerciales. **Podemos afirmar que todas las leyes de la mecánica tienen que ser invariantes para los sistemas de referencia inerciales.** Dicho de otra forma, las leyes de la mecánica tienen la misma expresión matemática en los distintos sistemas de referencia inerciales. Esta afirmación constituye el **principio de relatividad de Galileo**.
1.3 Postulados de la relatividad especial

Al formular la teoría de la relatividad especial, Einstein partió de dos postulados que se sustentaban en todo el material teórico y experimental disponible en el experimento de Michelson-Morley, que él no conocía.

El primer postulado es la generalización del principio de relatividad de Galileo que volvemos a enunciar de la siguiente forma: Todos los fenómenos físicos transcurren de igual modo, y las leyes de la naturaleza y las ecuaciones matemáticas que las describen son invariantes en todos los sistemas de referencia inerciales. Dicho de otro modo, todos los sistemas de referencia inerciales son equivalentes.

El segundo postulado es la constancia de la velocidad de la luz en el vacío para todos los sistemas de referencia inerciales y en todas las direcciones.

Antes de hacer alguna deducción a partir de estos postulados, Einstein analizó cuidadosamente los procedimientos de medición de los conceptos fundamentales de espacio y tiempo, ya que para la descripción de un suceso en un sistema de referencia dado es necesario indicar el lugar y el instante en que ocurre dicho suceso.

La posición de un punto en un sistema de referencia donde tiene lugar un suceso se puede determinar por las coordenadas cartesianas del punto; el instante en que se produce el suceso se puede determinar con la ayuda de un reloj instalado en dicho punto. El problema que surge cuando es necesario relacionar sucesos que ocurren en diferentes lugares se puede resolver instalando relojes sincronizados en cada punto.

Como el concepto de tiempo se basa en el concepto de simultaneidad, analicemos este último en primer lugar.

En la mecánica clásica la localización del lugar donde sucede un suceso es relativa al sistema de referencia. Por ejemplo, la posición de una malea que va en un tren no varía en el sistema de referencia ligado al tren y, sin embargo, sí lo hace en el sistema de referencia ligado a la vía. En contraposición a esto, la diferencia de tiempo entre dos sucesos, en la mecánica clásica, no depende del sistema de referencia. Esto es, si dos sucesos son simultáneos en un sistema de referencia, son también simultáneos en cualquier otro sistema de referencia.

Actividades

1. **Investiga** las consecuencias de la teoría de la relatividad especial como:
 a) Dilatación del tiempo.
 b) Contracción de Lorentz.
 c) El concepto espacio-tiempo.
2.1 La teoría de Planck

Se llama radiación térmica a la radiación electromagnética que emiten los cuerpos como consecuencia de su temperatura. Todos los cuerpos emiten este tipo de radiación al medio que los rodea y la absorben de él.

La materia en estado condensado, es decir, sólido o líquido, emite un espectro de radiación continuo. La forma detallada del espectro de emisión de un cuerpo caliente depende de la composición del mismo. Sin embargo, experimentalmente se encuentra que existe un tipo de cuerpo que emite un espectro de radiación de características universales. Estos son llamados cuerpos negros, es decir, cuerpos cuyas superficies absorben toda la radiación térmica que incide sobre ellos y, por tanto, al no reflejar la luz, se les ve de color negro. El cuerpo negro más utilizado experimentalmente consiste en un cuerpo con una cavidad que se comunica con el exterior por un pequeño agujero. Toda la radiación que incide sobre el agujero se refleja en la cavidad de modo que eventualmente se absorbe en las paredes, por lo que la radiación reflejada por el agujero al exterior es despreciable; en consecuencia, el agujero tendrá todas las propiedades de un cuerpo negro.

Planck propuso que la energía emitida por un cuerpo negro no es continua sino discreta, formada por gramos de energía llamados cuantos.

La energía de estos cuantos depende de la frecuencia y viene dada por:

\[E = hf \]

Donde \(f \) es la frecuencia de la radiación emitida y \(h \) una constante llamada constante de Planck, de valor \(h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s} \).

Con la hipótesis de Planck se explicó teóricamente la radiación del cuerpo negro. Ajustando los valores teóricos con los experimentales se puede calcular el valor de \(h \). Estos cálculos los realizó Planck y sus valores concuerdan muy bien con los obtenidos por otros métodos. Planck sostuvo que eran solo las energías de los electrones que oscilan las que estaban cuantizadas. Más tarde se aceptó que la energía de las ondas electromagnéticas también está cuantizada.

2.2 El efecto fotoeléctrico

A finales del siglo XIX una serie de experimentos puso de manifiesto que la superficie de un metal emite electrones cuando sobre ella incide luz de frecuencia suficientemente elevada. Este fenómeno se conoce como efecto fotoeléctrico.

Para explicar los hechos observados en el efecto fotoeléctrico, Einstein propuso que la luz no solo se emitía en forma de cuantos, sino que también se propagaba en forma de cuantos, que llamaremos fotones. La energía de los fotones está relacionada con su frecuencia y viene dada por la ecuación 3a. En el proceso de absorción del fotón deben conservarse la energía y el momento lineal; esto implica que el electrón debe estar ligado, y las fuerzas de ligadura permiten transmitir parte del momento al ion o al sólido; y teniendo en cuenta la gran masa del ion o del sólido en comparación con el electrón, el sistema absorbe gran parte del momento sin adquirir una apreciable cantidad de energía. En consecuencia, la ecuación de la energía en el efecto fotoeléctrico sigue siendo válida.
2.3 Modelos atómicos

Para verificar la validez del modelo de Thomson, en el 1910 Rutherford estudió la dispersión de las partículas alfa, por los átomos. Según el modelo de Thomson, las partículas alfa no se desviarían o se desviaran muy poco. El experimento demostró que, si bien la mayor parte de las partículas eran desviadas muy poco, algunas se desviaban ángulos muy grandes e incluso rebotaban, hechos incompatibles con el modelo de Thomson. La única explicación posible a los resultados de este experimento era que la carga eléctrica positiva y prácticamente toda la masa del átomo estuviesen concentradas en una región muy pequeña, que constituye el núcleo atómico, y que los electrones estuviesen girando alrededor del núcleo. Esta propuesta constituye el modelo de Rutherford.

Pero los electrones girando alrededor del núcleo tienen aceleración centrípeta y, según la teoría electromagnética clásica, cualquier carga acelerada radia energía. Esto haría que el electrón se precipitase hacia el núcleo describiendo una trayectoria en espiral, emitiendo un espectro continuo de energía. Es decir, la materia sería inestable, cosa que no sucede.

Ante los problemas que planteaba el modelo atómico de Rutherford, Bohr propuso su modelo atómico mediante los siguientes postulados:

- Los electrones en los átomos se mueven en órbitas circulares alrededor del núcleo debido a la atracción colombiana entre los electrones y el núcleo.

- El electrón solo puede moverse en órbitas para las cuales el momento angular \(L \) es un múltiplo entero de la constante de Planck entre \(2\pi \).

\[
\frac{3c}{m} = \frac{\hbar}{2\pi}
\]

- A pesar de que el electrón está acelerado constantemente, cuando se mueve en una órbita permitida no radió energía y entonces la energía total permanece constante.

- El electrón solo emite energía cuando salta de una órbita permitida \(E_i \) a otra órbita \(E_f \) permitida menor que el \(E_i \). La frecuencia de la radiación permitida viene dada por:

\[
f = \frac{E_i - E_f}{\hbar}
\]

ACTIVIDADES

1. Resuelve en tu cuaderno.
 - Encuentra la energía asociada a un fotón cuya frecuencia es de: a) \(6 \times 10^6 \) Hz, b) \(9.5 \times 10^{20} \) Hz, c) \(10^{50} \) Hz.
 - Un fotoelectrón es expulsado de un átomo con una rapidez de \(3 \times 104 \) m/s. Si la frecuencia de haz de luz incidente es de \(7 \times 109 \) Hz, determina la función trabajo del metal.
 - ¿Cuál sería la frecuencia de un fotón emitido cuando pasa un electrón, hipotético, de un nivel de energía de \(15 \times 10^{-19} \) J a otro nivel de energía de \(12 \times 10^{-19} \) J?
A pesar de los éxitos de la teoría cuántica antigua que nos han permitido explicar los hechos que hemos estudiado y otros, como el calor específico de los sólidos o la producción de pares, esta teoría no está libre de crítica. Algunos aspectos débiles de la vieja teoría cuántica son:

- Esta teoría solo establece la manera de tratar sistemas periódicos, pero existen muchos sistemas de interés físico que no lo son.
- Permite calcular las energías de estados permitidos para ciertos sistemas y calcular la frecuencia de los fotones absorbidos o emitidos. Sin embargo, no permite calcular las intensidades de las líneas espectrales ni las reglas de selección de las transiciones.
- La teoría tiene éxito para los átomos monoeléctricos y los metales alcalinos se pueden tratar de forma aproximada. Sin embargo falla al aplicarse, por ejemplo, al átomo de helio.
- Por último, le falta coherencia, lo que hace que sea intelectualmente insatisfactoria.

3.1 Ondas de materia

En 1924 Louis de Broglie propuso la existencia de ondas de materia. La hipótesis de De Broglie consistía en suponer para la materia el comportamiento dual de la radiación, es decir, el comportamiento onda-partícula. Así como el fotón tiene asociada una onda que gobierna su movimiento, una partícula de materia, por ejemplo un electrón, debe tener una onda asociada que gobiernre su movimiento.

La hipótesis de De Broglie es esencialmente una manifestación de la gran simetría de la naturaleza; los aspectos ondulatorios de la materia están relacionados con los aspectos corpusculares de la misma forma cuantitativa que en el caso de la radiación.

Tanto en la materia como en la radiación, la energía total está relacionada con la frecuencia de la onda asociada a su movimiento por la ecuación $E = hf$, y la cantidad de movimiento está relacionada con la longitud de onda de la onda asociada por la ecuación:

$$ p = \frac{h}{\lambda} $$

Los conceptos corpusculares de energía E y de cantidad de movimiento p están relacionados con los conceptos ondulatorios de frecuencia f y de longitud de onda λ, a través de la constante de Planck h.

La naturaleza ondulatoria de la materia pudo ser probada de la misma manera en que se estableció la naturaleza de los rayos X: mediante la difracción de partículas. Para ello se hizo incidir un haz de electrones sobre un sólido cristalino, siendo sus átomos centros de dispersión de la onda electromagnética y produciéndose fenómenos de difracción. Merece la pena resaltar que J. J. Thomson, en 1897, descubrió el electrón, caracterizándolo como una partícula con una relación carga-masa bien definida, por lo que recibió el premio Nobel de Física en 1906. Su hijo G. P. Thomson, en 1927, descubrió experimentalmente la difracción del electrón, fenómeno ondulatorio, y recibió el premio Nobel de Física compartido con Davisson en 1937.
3.2 Principio de incertidumbre de Heisenberg

Describa la partícula como un paquete de ondas, cuanto más estrecho sea el grupo de ondas, más fácilmente se puede determinar la posición de la partícula, pero más difícilmente se puede calcular su longitud de onda. Por el contrario, si el paquete de ondas es ancho, se puede determinar fácilmente la longitud de onda, pero, ¿dónde se localiza la partícula? De esta forma, en 1927, el alemán Werner Heisenberg enunció su principio de incertidumbre, el cual establece que es imposible determinar simultáneamente la posición y el momento lineal de una partícula, compresión infinita, por lo que si \(\Delta x \) y \(\Delta p \) son, respectivamente, las mayores precisiones con que se pueden determinar en un instante dado la posición y el momento lineal de la partícula en la dirección \(x \), entonces:

\[
\Delta x \cdot \Delta p \geq h
\]

El principio de incertidumbre de Heisenberg es algo más que una consecuencia teórica, pues se trata de una realidad física como lo demuestra la siguiente experiencia imaginada por Bohr en 1928. Tratemos de determinar la posición y el momento lineal en un instante dado de un electrón mediante la observación con un microscopio. Dicha partícula será observada por los fotones de luz que dispersa al ser iluminada. En este proceso, cada fotón posee un momento lineal \(h/\lambda \) y, al entrar en colisión con el electrón, este sufre una variación en su momento lineal \(p \), por lo que la realización de la medida introduce una incertidumbre en la determinación del momento lineal del electrón: \(\Delta p \). Cuanto mayor sea la longitud de onda de la luz empleada para ver al electrón, menor será su momento lineal y, como las propiedades que se ponen en juego en la interacción deben ser del mismo orden de magnitud, resulta que \(\Delta p = h/\lambda \), por lo que, cuanto mayor sea la \(\lambda \) de la luz empleada, más pequeña será la incertidumbre en la medida del momento lineal del electrón.

Si se tiene en cuenta que el poder de resolución del microscopio determina la precisión máxima con la que puede ubicarse a la partícula, teniendo en cuenta el criterio de Lord Rayleigh de que el límite de resolución del microscopio es directamente proporcional a la longitud de onda de la luz dispersada, entonces \(\Delta x = \lambda \), por lo que, cuanto mayor sea \(\lambda \), mayor será la incertidumbre en la medida de la posición del electrón.

ACTIVIDADES

1. **Resuelve.**
 - Una pelota de béisbol se mueve con una rapidez de 50 m/s. **Determina** la longitud de onda y la frecuencia asociada a la pelota.

<table>
<thead>
<tr>
<th>longitud de onda</th>
<th>frecuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 - Un electrón se mueve con una velocidad 0.5c. **Encuentra** la frecuencia asociada al electrón.

<table>
<thead>
<tr>
<th>frecuencia associada al electrón</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

 - **Determina** la incertidumbre del momento lineal de un electrón, si conocemos que la incertidumbre en su posición es de 3 x 10^{-4} m.

<table>
<thead>
<tr>
<th>incertidumbre momento lineal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

© Santillana, S.A.
4 La física nuclear

4.1 Síntesis histórica

El final del siglo XIX fue prolífico en descubrimientos en el mundo de la física. En 1895, W. K. Roentgen descubrió los rayos X; a comienzos de 1896, H. Becquerel anunciaba en París el descubrimiento de la radiactividad; en 1897, Thomson descubrió el electrón, etc.

El fenómeno de la radiactividad fue descubierto en 1896 por el físico francés Becquerel (1852-1908). Becquerel estudiaba la posibilidad de que la luz solar provocase en ciertas sales el descenso de los rayos penetrantes, como los rayos X, y de que dichos rayos impresionasen una placa fotográfica.

Durante unos días en los que el Sol estuvo oculto, Becquerel guardó las sales en un cajón junto a las placas fotográficas; al revelarlas encontró que se habían impresionado con gran intensidad. Becquerel atribuyó este hecho a rayos emitidos por el uranio.

En 1898, Marie Curie (1867-1934) descubrió en París que el elemento torio emitía rayos similares; junto con su marido, Pierre Curie (1859-1906), dedujo que este fenómeno estaba asociado a los átomos y que era independiente de su estado físico o químico.

En la pechblenda, un mineral de uranio, descubrieron dos nuevas elementos, el polonio y el radio. Ese mismo año, los Curie dieron al fenómeno su nombre moderno: radiactividad.

Rutherford reconoció la existencia de, al menos, dos emisiones radiactivas, denominándolas rayos alfa, α, y rayos beta, β. Además, los elementos radiactivos emitían otra clase de radiación, que se denominó rayos gamma, γ.

Los tres tipos de radiación se pueden diferenciar por la acción de un campo magnético:

- Los rayos gamma no son desviados en absoluto, ya que consisten en radiación electromagnética de longitudes de onda comprendidas entre 10^{-10} y 10^{-13} m. Tienen un gran poder de penetración.

- Los rayos beta son desviados considerablemente en una dirección tal que indica que poseen carga negativa. Consisten en electrones con velocidades próximas a la de la luz, representándose como β. Las velocidades de estas partículas emitidas por un mismo tipo de átomos poseen una variación continua. Este hecho llevó a la suposición de que junto a las partículas beta se emitía otra partícula neutra cuya masa en reposo debería ser muy pequeña. Esta partícula es un antineutrino. Los rayos beta son absorbidos por una lámina de aluminio de 5 mm de espesor o una de plomo de 1 mm de espesor. Su alcance máximo en los tejidos es de 15 mm.

- Los rayos alfa son desviados en un ángulo menor y en la dirección opuesta que los beta, lo que indica que están cargados positivamente. La velocidad inicial de estas partículas depende del isótopo que las ha originado, pero la mayoría de las partículas emitidas por un isótopo dado tienen la misma velocidad. Esta suele ser de 1/15 a 1/20 la velocidad de la luz. Estas partículas consisten en núcleos de helio (He). Son detenidos y absorbidos por una hoja de papel o una lámina de aluminio de 0,1 mm de espesor.
4.2 Constitución del núcleo

El hecho de que los elementos radiactivos emitan rayos alfa y beta, ambos de naturaleza corpuscular, sugirió la idea de que los átomos estaban constituidos por partículas elementales.

En 1907, Rutherford abandonó el estudio sobre la naturaleza de la radioactividad para utilizarla como medio que le permitiera resolver cómo estaban distribuidas la carga y la masa dentro del átomo. El núcleo del átomo se descubrió en los ensayos realizados en la Universidad de Manchester en 1909-1911 bajo su dirección, pero incluso los físicos que estudiaban la radioactividad no aceptaron este modelo más que de forma progresiva. En 1911, Rutherford anunció que los núcleos de nitrógeno bombardeados con partículas alfa pueden expulsar núcleos de hidrógeno, protones, lo cual constituía una seria prueba de la hipótesis nuclear.

Cuando las partículas pasan a través de una hoja metálica delgada, la mayoría de ellas no sufren ninguna desviación apreciable, pero una pequeña proporción es dispersada en ángulos grandes; por ejemplo, con una hoja de oro de 0,0004 mm de espesor, únicamente una partícula α entre 20,000 sufre una desviación de 90° o más. Rutherford demostró que esta dispersión se debía a un único choque y que toda la carga positiva de un átomo estaba concentrada en un centro muy pequeño o núcleo. Este núcleo deberá estar rodeado, a distancia relativamente grande, por el número necesario de electrones para dar un átomo neutro.

Los trabajos de dispersión indicaban que la carga del núcleo era aproximadamente igual a la mitad de la masa atómica, y en 1913 se sugirió que el número de cargas en el núcleo, Z, era igual al número de posición del elemento en el sistema periódico; es decir, la carga nuclear es igual al número atómico. Esto se comprobó posteriormente.

ACTIVIDADES

1. **Dibuja** el modelo atómico de Thompson y el modelo de Rutherford.

2. **Describe** las definiciones del modelo de Thompson.

3. **Investiga** cómo nos podemos proteger de las radiaciones.
5.1 El reactor nuclear

Un reactor nuclear es un dispositivo diseñado para obtener energía nuclear de manera controlada, a partir de una reacción nuclear en cadena autosostenida.

El primer reactor nuclear fue construido por Enrico Fermi en 1942. Desde entonces se han diseñado reactores nucleares de diferentes tipos y tamaños, si bien todos poseen unos elementos comunes:

- Combustible nuclear.
- Moderador de neutrones.
- Elementos de control.

Por combustible nuclear entendemos un material fisible, el cual suele disponerse en forma de delgadas varillas, muy próximas entre sí, en el denominado núcleo del reactor (ver figura de la izquierda). Un combustible nuclear típico es el ^{235}U. No obstante, dicho isótopo representa apenas el 0.7% del total de los átomos de uranio presentes en la naturaleza (el resto es ^{238}U), de manera que debe enriquecerse dicho uranio a fin de incrementar hasta un 3% la abundancia del ^{235}U.

El objetivo del reactor nuclear es proporcionar energía. Si la potencia que ha de suministrar ha de permanecer constante, entonces cada fisión debe dar lugar a un único neutrón capaz de provocar una nueva fisión. En tal caso, el reactor funciona críticamente, suministrando energía de manera estable. El reactor se vuelve subcrítico cuando se origina, por término medio, menos de un neutrón por núcleo fisiónado. Obviamente, en este reactor la reacción en cadena no puede automantenerse y llega un momento en que deja de proporcionar energía. Si, por el contrario, produce más de un neutrón por fisión, está en condiciones de originar nuevas fisiones y hablaremos de un reactor supercrítico. En tal caso, el ritmo de producción de energía aumenta, pudiendo liberarse tal cantidad de energía que acabe por fundir el núcleo del reactor.

Resulta evidente que el reactor debe funcionar en su estado crítico, lo que requiere elementos de control. Dicho control se logra introduciendo en el núcleo del reactor unas varillas de control, generalmente de boro o cadmio, que tienen la finalidad de absorber neutrones cuando el reactor empiece a volverse supercrítico. Si el reactor se vuelve subcrítico, cabe la posibilidad de retirar total o parcialmente dichas varillas hasta que se alcance de nuevo una situación crítica.
Introducción
Cuando los cuerpos se calientan, emiten energía en forma de radiación electromagnética. Generalmente esta radiación está compuesta por la suma de varias radiaciones que se pueden separar, utilizando los dispositivos adecuados. Esto da como resultado un espectro, que es característico de cada sustancia y que permite su reconocimiento.

La espectroscopía es un conjunto de técnicas y teorías destinadas a producir, interpretar y explicar los espectros de las sustancias, y constituye una de las principales herramientas del análisis químico.

Objetivo
Observar los espectros visibles de emisión de distintos elementos químicos, directamente.

Materiales y reactivos
- Un mechero de Bunsen.
- Hilo de nicromo con mango.
- Vidrios de reloj.
- Una pipeta.

Análisis a la llama
- Ácido clorhídrico concentrado.
- Sales de potasio, de sodio, de cobre, de calcio, de bario, de plomo, etc.

Procedimiento
1. En un vidrio de reloj, **mezcla** una pequeña cantidad de la sustancia que vas a analizar, con ácido clorhídrico.
2. **Humedece** el extremo del hilo de nicromo en la solución obtenida y, acto seguido, **coloca** el extremo humedecido en la región no luminosa de la llama del mechero de Bunsen.
3. **Observa** la coloración que adquiere la llama.
4. **Realiza** los pasos anteriores con distintas sustancias. Después de cada ensayo, **lava** el vidrio de reloj y **limpia** el hilo.

Para ello **introduce** el hilo en ácido clorhídrico y **calienta** al rojo.

Conclusiones
Anota los resultados de tus observaciones y **describe** las coloraciones de la llama para cada una de las sustancias analizadas.

Resumen
- La **relatividad** extiende el campo de aplicación de la Física a las regiones de las altas velocidades; la **física cuántica** la extiende a las regiones de dimensiones pequeñas, atómicas.
- La relatividad se caracteriza por una constante universal, la velocidad de la luz, c; la física cuántica por otra constante universal, h, llamada **constante de Planck**.
- La relatividad rompe con los conceptos clásicos de espacio, tiempo, masa y energía. La física cuántica rompe también con otros conceptos fundamentales en el marco de la física clásica, como son: la **continuidad de la energía**, el **determinismo**, la **distinción clara entre ondas y partículas**, la **trayectoria**, etc.
- Fueron muchos los caminos que pusieron de manifiesto la insuficiencia de la física clásica. La necesidad de la física cuántica se manifestará por las contradicciones sistemáticas de las leyes clásicas en la explicación de fenómenos como:
 - La **radiación del cuerpo negro**. Según la física clásica los cuerpos negros absorben y emiten radiación electromagnética de forma continua, pero estas teorías no concordaban con las evidencias experimentales.
 - El **efecto fotoeléctrico**. El efecto fotoeléctrico es un fenómeno que consiste en la emisión de electrones de ciertos metales expuestos a radiación electromagnética. La teoría clásica predecía la dependencia de la energía cinética de los electrones emitidos y la intensidad de la radiación incidente. Las evidencias experimentales mostraban que no era así.
 - El **efecto Compton**. Este fenómeno es la reducción de la longitud de onda y desviación de los rayos de luz, muy energéticos, que atraviesan ciertas sustancias. La teoría clásica sostenía que la luz es un fenómeno netamente ondulatorio, en contradicción de este hecho experimental.
 - Los **espectros de emisión y absorción** de la radiación electromagnética por los átomos es consecuencia de la cuantificación de la energía.
Actividades manuales y trabajo

Contenido

Contenidos conceptual y procedimental
1. La xilografía.
 1.1 El grabado en relieve.
 1.2 Utilización del linóleo y otros materiales no convencionales.

Saber hacer: Elaborar una plancha matriz.

Contenido actitudinal

Trabajo: Actividades manuales

Temas transversales: Trabajo

Actividades manuales

Las actividades manuales son un modo de entretenerte en función de los gustos personales, pero constituyen también un medio de trabajo en el que, además, se ejercita parte de nuestro organismo, como sucede con el grabado en madera, por ejemplo.

- ¿Qué tipo de actividad manual te gustaría realizar y por qué?
¿Qué sabes del tema?

1. ¿Qué actividades manuales practicas?

2. ¿Te parece importante realizar actividades manuales? ¿Por qué?

3. ¿Conoces la xilografía? Explica tu respuesta.

Planifica tu trabajo

1. Piensa en lo que sabes sobre el tema y en lo que te gustaría aprender, luego traza tus metas y planifica el estudio de la unidad.

Mapa conceptual

La xilografía

- El grabado en relieve
- Elaborar una plancha matriz
- Utilización del linóleo y otros materiales no convencionales
1.1 El grabado en relieve

La xilografía es el grabado en relieve realizado sobre madera, para ello se excavan surcos más o menos gruesos y profundos con las gubias.

La estampación se hace entintando la plancha-matriz con un rodillo y, al depositar el papel encima de la plancha, quedarán estampadas las partes que sobresalgan.

La estampación de la imagen del grabado en relieve siempre queda invertida, como si fuera el reflejo en un espejo.

Proceso de estampación en relieve

1. Se realiza la plancha-matriz en relieve e invertida.
2. Se entinta por medio de un rodillo.
3. Se deposita el papel encima de la plancha ya entintada y se estampa la plancha ejerciendo presión sobre el papel y la plancha.
4. El grabado ya está realizado.

1.2 Utilización del linóleo y otros materiales no convencionales

Para extraer todas las posibilidades expresivas a una misma matriz de li- nóleo debes proceder del modo siguiente:

A partir de una plancha-matriz que previamente habrás elaborado, extraer de la misma, diversas posibilidades expresivas, tal como se indica a continuación:

1. **Debe entintar** la plancha-matriz con diferentes colores. **Seleciona** dichos colores a tu gusto.

2. **Utiliza** distintos colores para el soporte-papel, es decir puedes seleccionar un papel de un color diferente en cada caso.

3. **Aplica** fragmentos de papeles (llamados fordinos) en el soporte.

Observa el procedimiento siguiente.
Saber hacer

Elaborar una plancha matriz xilográfica

Para elaborar una plancha matriz xilográfica, sigue estos pasos:

1. **Selecciona** una madera en uno de los tipos de madera de la foto.
2. **Haz** los surcos gruesos y profundos en la madera con una gubía, en función del dibujo que desees estampar.
3. **Estampa** el dibujo siguiendo las técnicas explicadas en la unidad.

![Diferentes materiales para elaborar matrices xilográficas.](image)

Actividades

1. **Realiza** un collage con fragmentos de estampaciones.

 Recopila diferentes materiales que tengan una superficie lo suficientemente irregular y rugosa (cristales esmerilados, papeles de lija, telas de saco...) para que los puedas estampar, es decir, entintar con un rodillo y, a continuación, proceder a su estampación colocando una hoja blanca sobre su superficie y presionando con un rodillo o con una botella cilíndrica.

2. **Realiza** un collage con fragmentos de estampaciones de diferentes materiales; puedes variar los colores de la pintura y/o de los papeles.

3. **Comenta** tu experiencia.

Resumen

- La **xilografía** es un grabado en relieve realizado sobre madera excavada previamente, para después proceder a la estampación correspondiente.
- **Los pasos** para la estampación en relieve son: la realización de la plancha matriz, el entintado de la plancha, la colocación del papel sobre la plancha entintada y el grabado propiamente dicho.
- Si utilizas el linóleo para estampar tu relieve: **entinta** la plancha matriz, **utiliza** el color que más te guste, **aplica** el soporte-papel o **aplica** fragmentos de papeles en el soporte. Estos fragmentos son denominados **fondinos**.
Aplicaciones de la derivada

Contenido

Contenido conceptual y procedimental
1. Ecuaciones de la tangente y la normal.
 1.1 Ecuación de la recta tangente.
 1.2 Ecuación de la recta normal.
2. Teorema del valor medio.
 2.1 Teorema del valor medio.
 2.2 Teorema de Rolle.
3. Valores críticos de una función.
 3.1 Valores críticos de una función.
 3.2 Otro modo de obtener los valores críticos.
4. Puntos de inflexión.
 4.1 Concavidad y convexidad de una curva.
 4.2 Puntos de inflexión.
5. Diferencial de una función.
 5.1 Diferenciales.

- **Saber hacer:**
 Aplicaciones de los diferenciales.

Contenido actitudinal
Trabajo: Trabajo y precisión.

Temas transversales: Trabajo

Trabajo y precisión

La **precisión** y el **rigor** son requisitos básicos para conseguir calidad en el trabajo. En un **proceso industrial**, el **diseño** de una maquinaria o el **control aéreo**, por poner sólo unos ejemplo, el cuidado es una condición fundamental para lograr los objetivos propuestos.

La precisión va unida al dominio del cálculo de diversas variables. Si todo se deja al azar, si se descuida el seguimiento de los procesos, aumentan considerablemente los riesgos y las posibilidades de fracaso en la empresa.

- ¿Qué relación se establece entre la precisión y la calidad del trabajo?
¿Qué sabes del tema?

1. **Observa** la figura.
 - ¿En qué tramo de la gráfica, de \(y = f(x) \), esta función es creciente?
 - ¿En qué tramo es decreciente?
 - ¿Qué le ocurre a la pendiente de la tangente conforme se acerca a \(R \)?
 - ¿Cómo es la pendiente de la tangente para \(x > a \)?)

Planifica tu trabajo

- **Conoce** las ecuaciones de la tangente y la normal en un punto de una curva.
- **Resuelve** problemas usando los teoremas del valor medio y de Rolle.
- **Determina** los valores críticos de una función en un intervalo.
- **Obtiene** las pautas de inflexión de un área.
- **Aplica** diferenciales en el cálculo aritmético.

Mapa conceptual

```
Aplicaciones de la derivada

- Ecuación de la tangente
  - Teorema del valor medio
  - Teorema de Rolle

- Ecuación de la normal

- Valores críticos

- Puntos de inflexión
```
1 Ecuaciones de la tangente y la normal

1.1 Ecuación de la recta tangente

La derivada de la función $y = f(x)$ en $x = x_0$, se interpreta geométricamente como la pendiente de la recta tangente que pasa por el punto $P(x_0, y_0)$ de la representación gráfica de $y = f(x)$.

La pendiente de la tangente T que pasa por $P(x_0, y_0)$ es la derivada de la función $y = f(x)$ en $P(x_0, y_0)$.

Conocido el punto $P(x_0, y_0)$ y el valor de la derivada de la función en dicho punto, $f'(x_0)$, la ecuación de la tangente a la curva en $P(x_0, y_0)$ es:

$$y - y_0 = f'(x_0)(x - x_0)$$

Si $f'(x_0) = 0$, la tangente a la curva en $P(x_0, y_0)$ es paralela al eje horizontal. La ecuación de la tangente en este caso es: $y = y_0$.

Si $f'(x_0) = \pm \infty$, la tangente a la curva en $P(x_0, y_0)$ es paralela al eje vertical. La ecuación de esta tangente es: $x = x_0$.

Observe los ejemplos siguientes.

- Obtener la ecuación de la tangente a la curva $y = f(x) = x^3 - x$, en el punto $P(1, 0)$.

La derivada de la función $y = f(x)$ es: $y' = 3x^2 - 1$

Luego: $f'(1) = 3(1)^2 - 1 = 2$.

La ecuación de la tangente a la curva $y = x^3 - x$ en el punto $P(1, 0)$ se obtiene al sustituir $f'(1) = 2$ y las coordenadas del punto de tangencia en la ecuación de la tangente:

$$y - 0 = f'(1)(x - 1)$$

Luego, $y = 2x - 2$, es la ecuación de la tangente.

- Determinar la ecuación de la tangente a la curva $y = f(x) = x^2 - x$, en el punto $P(2, 3)$.

La derivada de la función es: $y' = f'(x) = 2x - 1$.

Entonces: $f'(2) = 2(2) - 1 = 3$.

La ecuación de la tangente en el punto $P(2, 3)$ es:

$$y - 3 = 3(x - 2) \rightarrow y = 3x - 3$$
1.2 Ecuación de la recta normal

La recta perpendicular a la tangente en el punto de tangencia se llama recta normal, N.

Puesto que la normal y la tangente en un punto son perpendiculares una de la otra, la ecuación de la normal a la curva \(y = f(x) \) que pasa por el punto \((x_0, y_0) \) es:

\[
y - y_0 = -\frac{1}{f'(x_0)}(x - x_0)
\]

Fíjate en los ejemplos.

- ¿Cuál es la ecuación de la recta normal a la curva \(y = \frac{1}{x} \) en el punto \(P(1, 1) \)?

Se calcula primero la pendiente de la tangente en \(P(1,1) \):

\[
y' = -\frac{1}{x^2} \rightarrow f'(1) = -1
\]

Luego:

\[
y - 1 = -\frac{1}{1}(x - 1).
\]

La ecuación buscada es: \(y = x \).

- Obtener la ecuación de la recta normal a la curva \(y = -\frac{x^2}{2} + 2x \) en el punto \(P\left(1, \frac{3}{2}\right)\).

\[
y' = -x + 2 \rightarrow f'(1) = -(1) + 2 = 1
\]

Entonces:

\[
y - \frac{3}{2} = -\frac{1}{1}(x - 1).
\]

\[
y - \frac{3}{2} = -x + 1
\]

La ecuación de la normal es:

\[
y = -x + \frac{5}{2}.
\]

ACTIVIDADES

1. Determina la ecuación de la tangente y la normal a la curva dada para el valor \(x_0 \) dado.

 - \(y = 2x^2; \ x_0 = 1 \).

 - \(y = (2 - x)/x; \ x_0 = 3 \).

 - \(x^2 + y^2 = 9; \ P(1, 2\sqrt{2}) \).

 - \(y = x^3 - x^2 + x + 1; \ x_0 = 0 \).

 - \(y = 5x^2 - 8x; \ x_0 = 1 \).

 - \(y = \ln x; \ x_0 = 5 \).
2 Teorema del valor medio

2.1 Teorema del valor medio

El teorema del valor medio enseña que para una función \(y = f(x) \), continua en un intervalo \([x_1, x_2]\), existe un valor de \(x_0 \) dentro del intervalo, tal que:

\[
f'(x_0) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}
\]

Este teorema puede ser ilustrado por medio de la representación gráfica de la izquierda.

La cuerda \(P\overline{Q} \) tiene pendiente:

\[
m_{P\overline{Q}} = \frac{QR}{PR} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}
\]

El teorema implica que existe al menos un punto \(S \) de la curva \(y = f(x) \) por el que pasa una tangente que es paralela a la cuerda \(P\overline{Q} \).

Por el punto \(S (x_0, f(x_0)) \) pasa \(T \) paralela a la cuerda \(P\overline{Q} \) que pasa por los puntos \(P \) y \(Q \).

Pon atención a los ejemplos siguientes.

* ¿Para qué valor \(x = x_0 \), se verifica que la tangente a la curva \(y = x^2 \), es paralela a la cuerda que pasa por \(P (0, 0) \) y \(Q (2, 4) \)?

Aquí: \(x_1 = 0; \ x_2 = 2 \)

Luego:

\[
f(x_1) = x_1^2 = 0^2 = 0;
\]

\[
f(x_2) = x_2^2 = 2^2 = 4;
\]

\[
f'(x) = 2x \Rightarrow f'(x_0) = 2x_0
\]

Entonces:

\[
f'(x_0) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}
\]

\[
2x_0 = \frac{4 - 0}{2 - 0} = 2
\]

Finalmente, \(2x_0 = 2 \Rightarrow x_0 = 1 \), es el valor buscado. Vamos a comprobarlo.

Si \(x_0 = 1 \), entonces: \(y_0 = x_0^2 = 1^2 = 1 \).

La ecuación de la tangente \(T \) que pasa por \(S (1, 1) \) es:

\[
y - 1 = 2 (1) (x - 1) \Rightarrow y = 2x - 1.
\]

La ecuación de la cuerda \(P\overline{Q} \) es:

\[
y - 0 = \left(\frac{4 - 0}{2 - 0} \right) (x - 0) \Rightarrow y = 2x.
\]

Observa que las pendientes de la tangente y la cuerda son iguales a 2, por consiguiente \(\overline{PQ} \parallel T \).
• ¿Para qué valor de x se verifica que la recta tangente a la curva $y = f(x) = \sqrt{x} - 1$ es paralela a la recta secante que pasa por los puntos $P(1, 0)$ y $Q(10, 3)$?

En este caso: $x_1 = 1$; $f(x_1) = f(1) = 0$
$x_2 = 10$; $f(x_2) = f(10) = 3$

Como $f'(x) = \frac{1}{2\sqrt{x}-1}$; $f'(x_0) = \frac{1}{2\sqrt{x_0}-1} = \frac{3-0}{10-1} = \frac{1}{3}$

Se despeja y se obtiene x_0:
\[
\frac{1}{2\sqrt{x_0}-1} = \frac{1}{3} \quad \rightarrow \quad 2\sqrt{x_0} - 1 = 3 \quad \rightarrow \quad 4(x_0 - 1) = 9 \quad \rightarrow \quad x_0 = \frac{13}{4} = 3.25
\]

2.2 Teorema de Rolle

Este teorema muestra que, si la función $y = f(x)$ es continua en el intervalo $[x_1, x_2]$ y $f(x_1) = f(x_2)$, existe al menos un punto en que la derivada de la función se anula en el intervalo $[x_1, x_2]$.

Así la función $y = f(x) = -x^2 + 6x - 5$, verifica que: $f(1) = f(5) = 0$. Luego, debe existir un valor en el intervalo $[1, 5]$ para el cual $f'(x_0) = 0$.

Para obtener el punto en que se anula y', se deriva $y = f(x)$ y la derivada se hace igual a cero para $x = x_0$. Luego, se despeja x_0:
\[
y' = f'(x) = -2x + 6 \quad \rightarrow \quad f'(x_0) = -2x_0 + 6 = 0 \quad \rightarrow \quad x_0 = \frac{3}{2} = 1.5
\]

Para $x_0 = 3$, la función vale $y_0 = f(x) = -(3)^2 + 6(3) - 5 = 4$. De acuerdo al teorema, en el punto $P(3, 4)$ la derivada de $y = -x^2 + 6x - 5$ se anula.

ACTIVIDADES

1. Comprueba el teorema del valor medio en el intervalo dado, obteniendo x_0 en cada caso.
 • $y = -x^2 + 3x$; $[0, 2]$.
 • $xy = 1$; $[0, 5]$.
 • $y = x^3$; $[1, 9]$.
 • $y = x^2 - 4x + 10$; $[0, 10]$.
3 Valores críticos de una función

3.1 Valores críticos de una función

Fíjate en la representación gráfica de la izquierda.

En el intervalo \([x, x]\) la función \(y = f(x)\) toma un valor máximo en \(P\), que es \(f(a)\), y un valor mínimo en \(Q\), que es \(f(b)\).

Fuera del intervalo considerado, \([x, x]\), la función podría alcanzar valores más grandes que \(f(a)\) o más pequeños que \(f(b)\). Los valores \(f(a)\) y \(f(b)\) son, respectivamente, los \(valores\) máximo y \(mínimo\) de \(y = f(x)\), \(sólo\) en el \(intervalo\) \([x_1, x_2]\).

Estos valores máximos y mínimos \(relativos\) de \(y = f(x)\) en \([x_1, x_2]\) se llaman \(valores\) \(críticos\) \(de\) \(la\) \(función\).

Una función \(y = f(x)\) alcanza un máximo relativo en \(x = a\), si para todo valor de \(x\) en el entorno de \(a\) se cumple que: \(f(a) \geq f(x)\).

Una función \(y = f(x)\) alcanza un mínimo relativo en \(x = b\), si para todo valor de \(x\) en el entorno de \(b\) se cumple que: \(f(b) \leq f(x)\).

En el punto \(P\), que corresponde al valor máximo \(f(a)\), la función pasa de ser \(creciente\) a ser \(decreciente\). En el punto \(Q\), que corresponde al valor mínimo \(f(b)\), la función pasa de ser \(decreciente\) a ser \(creciente\).

En cada punto crítico, la derivada de la función \(se\) \(anula\). Esto es, si para \(x = x_0\) hay un máximo o un mínimo relativo de \(y = f(x)\), entonces:

\[
\Gamma'(x_0) = 0
\]

Para saber si el valor crítico es un mínimo o un máximo, se eligen valores ligeramente menores y ligeramente mayores que \(x_0\), y se sustituyen en pendiente \(y' = f'(x)\). Si \(f'(x)\) pasa de ser \(positiva\) a ser \(negativa\) hay un \(máximo\) \(relativo\). Si \(f'(x)\) pasa de ser \(negativa\) a ser \(positiva\) hay un \(mínimo\) \(relativo\).

Observa cómo se obtienen los valores críticos de una función en el siguiente ejemplo.

- Hallar los máximos y mínimos relativos de \(y = x^3 - 6x^2 + 11x - 6\).

Se obtiene \(y'\) y se iguala a cero: \(y' = 3x^2 - 12x + 11 = 0\).

Se resuelve esta ecuación cuadrática y se obtienen:

\[
x_1 = 2 - \frac{1}{3} \sqrt{3} = 1.42; \quad x_2 = 2 + \frac{1}{3} \sqrt{3} = 2.58
\]

\[
x_1: \begin{cases} x = 1.4; \quad f'(1.4) = 0.08 > 0 \quad \text{En } x_1 = 1.42, \text{ hay un máximo.} \\
x = 1.5; \quad f'(1.5) = -0.25 < 0 \quad \text{Este máximo es: } f(1.42) = 0.385.
\end{cases}
\]

\[
x_2: \begin{cases} x = 2.5; \quad f'(2.5) = -0.25 < 0 \quad \text{En } x_2 = 2.58, \text{ hay un mínimo.} \\
x = 2.6; \quad f'(2.6) = 0.08 > 0 \quad \text{Este mínimo es: } f(2.58) = -0.385.
\end{cases}
\]

Los puntos críticos son: \(P_1(1.42, 0.385); P_2(2.58, -0.385)\).
3.2 Otro modo de obtener los valores críticos

Los valores críticos de la función \(y = f(x) \) también pueden obtenerse haciendo uso de la derivada segunda, \(y'' = f''(x) \).

Fíjate en la primera figura de la izquierda. La función \(y = f(x) \) tiene un máximo relativo para \(x = a \).

Para todos los valores de \(x \) en el semintorno izquierdo de \(a \), la derivada es positiva, \(f'(x) > 0 \). Para todos los valores de \(x \) en el semintorno derecho de \(a \), la derivada es negativa, \(f'(x) < 0 \).

En \(x = a \) la derivada, \(f'(x) \), pasa de ser positiva a ser negativa. Entonces \(f'(x) \) es una función decreciente y, por consiguiente, la derivada segunda en \(x = a \) es negativa, \(f''(a) < 0 \).

Observa la segunda figura. La función \(y = f(x) \) tiene un mínimo relativo \(x = a \).

Para todos los valores de \(x \) en el semintorno izquierdo de \(a \), la derivada es negativa, \(f'(x) < 0 \). Para todos los valores de \(x \) en el semintorno derecho de \(a \), la derivada es positiva, \(f'(x) > 0 \).

En \(x = a \) la derivada pasa de ser negativa a ser positiva. \(f'(x) \) es una función creciente y, por consiguiente, la derivada segunda en \(x = a \) es positiva, \(f''(a) > 0 \).

En resumen:
- Si en \(x = a \) hay un máximo relativo, entonces \(f''(a) < 0 \).
- Si en \(x = a \) hay un mínimo relativo, entonces \(f''(a) > 0 \).

Pon atención al ejemplo.

- Determinar los puntos críticos de \(y = f(x) = x^3/3 + x^2/2 - 2x + 1 \).

Se halla la derivada de \(y \), se iguala a cero y se resuelve la ecuación resultante: \(y' = x^2 + x - 2 \Rightarrow x^2 + x - 2 = 0 \).

La solución de la ecuación cuadrática es: \(x_1 = -2; x_2 = 1 \).

La derivada segunda es \(y'' = f''(x) = 2x + 1 \). Luego, se sustituye el valor \(x_1 \) en \(y'' \), y se obtiene: \(f''(x_1) = f''(-2) = 2(-2) + 1 = -3 < 0 \).

Para \(x_1 = -2 \), hay máximo relativo. Este máximo relativo es:
\[
f(-2) = (-2)^3/3 + (-2)^2/2 - 2(-2) + 1 = 4.33
\]

Se sustituye el valor \(x_2 = 1 \) en \(y'' \): \(f''(x_2) = f''(1) = 2(1) + 1 = 3 > 0 \).

Para \(x_2 = 1 \), hay un mínimo relativo. Este mínimo relativo es:
\[
f(1) = (1)^3/3 + (1)^2/2 - 2(1) + 1 = -0.167
\]

ACTIVIDADES

1. Obtén los puntos críticos de las funciones siguientes.

- \(y = x^2 - 4x + 5 \).
- \(y = x^3 + 2x^2 - 5x + 1 \).
- \(y = x^3 + 2x + 10 \).
- \(y = -x^2 + x + 6 \).
- \(y = x^3 - 5x^2 + 8 \).
- \(y = x^5 - 60x^2 \).
4 Puntos de inflexión

Piensa y responde

- ¿Cuándo una curva es convexa y cuándo es cóncava?
- ¿Qué es un punto de inflexión de una curva?

4.1 Concavidad y convexidad de una curva

Observa la figura siguiente. Conforme x crece, las pendientes de las tangentes a la curva \(y = f(x) \) pasan de ser negativas a ser positivas. La curva abre hacia arriba.

![Gráfica de una curva](image)

Puesto que la derivada \(y' = f'(x) \) es una función creciente en el intervalo \([x_1, x_2]\) su derivada segunda, \(y'' = f''(x) \), es positiva para cualquier valor de x que pertenezca al intervalo \([x_1, x_2]\).

Una sección de una curva \(y = f(x) \) es cóncava o abierta hacia arriba si verifica que \(f''(x) > 0 \).

Ahora, fijate en la siguiente representación gráfica. Conforme x crece, las pendientes de las tangentes a la curva \(y = f(x) \) pasan de ser positivas a ser negativas. La curva abre hacia abajo.

![Gráfica de una curva](image)

Como la derivada \(y' = f'(x) \) es decreciente en el intervalo \([x_1, x_2]\), su derivada segunda \(y'' = f''(x) \), es negativa para cualquier valor de x que pertenezca al intervalo \([x_1, x_2]\).

Una sección de una curva \(y = f(x) \), es convexa o abierta hacia abajo si verifica que \(f''(x) < 0 \).

Fíjate en el ejemplo.

- Comprobar que la curva \(y = f(x) = x^3 + 2x^2 - 2 \) pasa de ser convexa a ser cóncava en el intervalo \([-2, 2]\).

La segunda derivada de \(y = f(x) \) es: \(y'' = f''(x) = 6x + 4 \).

Si se toma \(x = -2 \in [-2, 2] \): \(f''(-2) = 6(-2) + 4 = -12 + 4 = -8 < 0 \).

En el punto \(P(-2, -2) \), la curva es convexa.

Si se toma \(x = 1 \in [-2, 2] \): \(f''(1) = 6(1) + 4 = 6 + 4 = 10 > 0 \).

En el punto \(Q(1, 1) \), la curva es cóncava. Al recorrer la curva del punto \(P(-2, -2) \) al punto \(Q(1, 1) \), la misma pasa de convexa a cóncava.

© Santillana, S.A.
4.2 Puntos de inflexión

Los puntos de la curva en donde ésta cambia de cóncava a convexa y viceversa, se llaman puntos de inflexión.

En \(P (x_0, y_0) \) la curva de la figura pasa de convexa a cóncava.

En la parte convexa de la curva, \(y'' < 0 \) y en la parte cóncava \(y'' > 0 \). La segunda derivada pasa de ser negativa a ser positiva.

En el punto de inflexión \(P (x_0, y_0) \) la derivada segunda es nula.

Para obtener los puntos de inflexión de una curva cuya ecuación es \(y = f(x) \), se encuentra \(y'' = f''(x) \), se hace ésta igual a cero y se resuelve la ecuación resultante. Los valores de \(x \) obtenidos proporcionan las abscisas de los puntos de inflexión. Sustituyendo estas abscisas en la función \(y = f(x) \) se obtienen las ordenadas de dichos puntos.

Observa el ejemplo.

- Hallar los puntos de inflexión de la curva \(y = 0.1x^4 - x^2 + 0.9 \).

Para esta función: \(y' = 0.4x^3 - 2x \); \(y'' = 1.2x^2 - 2 \).

Como en los puntos de inflexión de una curva la segunda derivada es nula, entonces: \(f''(x) = 1.2x^2 - 2 = 0 \).

La solución de la ecuación es: \(x_1 = -1.29 \); \(x_2 = 1.29 \).

Estos valores \(x_1 \) y \(x_2 \) son las abscisas de los puntos de inflexión. Para obtener sus ordenadas se sustituyen \(x_1, x_2 \) en \(y = f(x) \):

\[y_1 = f(-1.29) = -0.49; \quad y_2 = f(1.29) = -0.49. \]

Los puntos de inflexión son: \(P_1 (-1.29, -0.49), P_2 (1.29, -0.49) \).

Actividades

1. Obtén los puntos de inflexión de las curvas dadas las funciones siguientes y comprueba el paso de cóncava a convexa y viceversa.

- \(y = 2x^3 - 5x^2 + x - 10 \).
- \(y = x^3 - 3x^2 - 10x \).
- \(y = x^3 + x^2 + x + 1 \).
- \(y = \frac{1}{12} x^4 \) \(- \frac{1}{2} x^2 + x + 1 \).
- \(y = x^4 + 4x^3 + 6x^2 - 22x + 24 \).
- \(y = x^4 + x^3 - 2x^2 \).
5.1 Diferenciales

Los símbolos \(dx, dy \) representan los **diferenciales** de las variables independiente y dependiente respectivamente. No deben ser confundidos con \(\Delta x, \Delta y \).

En la figura, \(\Delta y \) es el segmento \(QR \) y \(dy \) es el segmento \(SR \).

Conforme se toman los \(\Delta x \) más pequeños, \(\Delta y = dx; \Delta y \to dy \).

Si \(\frac{dy}{dx} = f'(x) \) expresa la derivada de una función \(y = f(x) \), entonces:

\[
\frac{dy}{dx} = f'(x) \; dx
\]

La **diferencial** de la variable dependiente \(y \) es igual al producto de la derivada de la función \(y = f'(x) \) y el diferencial de la variable independiente \(x \).

Observa los ejemplos:

- Dada la función \(y = 2x^2 \), determinar y comparar los valores de \(\Delta y \) y \(dy \) cuando \(x \) pasa del valor 2 al valor 2.001.

Aquí: \(x = 2, \Delta x = dx = 2.001 - 2 = 0.001 \).

Entonces \(y + \Delta y = 2(x + \Delta x)^2 \Rightarrow y + \Delta y = 2x^2 + 4x \Delta x + (\Delta x)^2 \).

\[
\Delta y = 4x \Delta x + (\Delta x)^2 = 4(2)(0.001) + (0.001)^2.
\]

\[
\Delta y = 0.008 + 0.000001 = 0.008001
\]

\[
\frac{dy}{dx} = f'(x) \; dx = f'(x) \; dx = 4x \; dx = dy = 4(2)(0.001) = 0.008000.
\]

Al comparar \(\Delta y \) y \(dx \) se nota que \(\Delta y = dy \).

- Si \(y = x/(x - 1) \), determinar y comparar \(\Delta y \) y \(dy \) si \(x \), la variable independiente, cambia de \(x_1 = 0 \) a \(x_2 = 0.007 \).

En este caso: \(\Delta x = dx = 0.007 - 0 = 0.007 \).

Luego:

\[
y + \Delta y = \frac{x + \Delta x}{x + \Delta x - 1} \rightarrow \Delta y = \frac{x + \Delta x}{x + \Delta x - 1} - \frac{x}{x - 1}
\]

Al resolver las operaciones indicadas queda:

\[
\Delta y = \frac{\Delta x}{(x - 1)(x + \Delta x - 1)} \quad \frac{\Delta x}{(0 - 1)(0 + 0.007 - 1)} = -0.00705
\]

Si se calcula \(dy \), esta da: \(-0.007\). Así: \(dx = dy \).

Actividades

1. Obtén \(dy \) en cada caso.

 - \(y = x^2 - 3x + 6 \)
 - \(y = \frac{2x}{x + 1} \)
 - \(y = \frac{1}{\sqrt{x + 1}} \)
 - \(y = e^x \cos x \)
Aplicaciones de los diferenciales

Pon atención a los ejemplos de aplicación siguientes.

• Calcular \(\sqrt{5} \) usando diferenciales.

\[
y = \sqrt{x} \Rightarrow dy = \frac{1}{2\sqrt{x}} \, dx.
\]

\[
\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \frac{(\sqrt{x + \Delta x} - \sqrt{x})(\sqrt{x + \Delta x} + \sqrt{x})}{x + \Delta x + \sqrt{x}}
\]

\[
= \frac{x + \Delta x - x}{\sqrt{x + \Delta x + \sqrt{x}}} = \frac{\Delta x}{\sqrt{x + \Delta x + \sqrt{x}}}
\]

\[
\Delta y = \frac{\Delta x}{\sqrt{x + \Delta x + \sqrt{x}}} = \frac{\Delta x}{2\sqrt{x}}
\]

Si \(x = 4, \Delta x = dx = 1 \):

\[
\sqrt{5} = \sqrt{x + \Delta x} = \frac{\sqrt{4} + 1}{\sqrt{4}} = 2 + \frac{1}{4} = 2.25
\]

Si se usa la calculadora: \(\sqrt{5} = 2.236 \). El resultado del recuadro es una buena aproximación de \(\sqrt{5} \).

• Obtener \((2.03)^2\).

\[
y = x^2 \Rightarrow dy = 2x \, dy
\]

\[
\Delta y = (x + \Delta x)^2 - x^2 = 2x \, \Delta x
\]

Si \(x = 2, \Delta x = dx = 0.03 \):

\[
(2.03)^2 = 2^2 + 2(2)(0.03) = 4.120
\]

La calculadora arroja el resultado 4.1209.

Ahora calcula tú.

- \(\frac{3}{29} \)
- \(4.09^2 \)
- \(\frac{1}{5.008} \)

Resumen

• Si \(y = f(x) \) es una función, su derivada en un punto \(P \) se interpreta geométricamente como la pendiente de la tangente geométrica que pasa por el punto \(P \) de su representación gráfica.

• Conocido \(P(x_0, y_0) \) y el valor de la derivada de la función en dicho punto, \(f'(x_0) \), la ecuación de la tangente a la curva en \(P(x_0, y_0) \) es:

\[
y - y_0 = f'(x_0) (x - x_0)
\]

• La recta perpendicular a la tangente en el punto de tangencia se llama recta normal, \(N \).

• La ecuación de la normal a la curva \(y = f(x) \) que pasa por el punto \(P(x_0, y_0) \) es:

\[
y - y_0 = -\frac{1}{f'(x_0)} (x - x_0)
\]

• El teorema del valor medio enseña que para una función \(y = f(x) \), continua en el intervalo \([x_1, x_2]\), existe un valor de \(x_0 \in [x_1, x_2] \), tal que:

\[
f'(x_0) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}
\]

• El teorema de Rolle muestra que si una función \(y = f(x) \) es continua en el intervalo \([x_1, x_2]\) y \(f(x_1) = f(x_2) \), existe al menos un punto en que su derivada se anula.

• En un punto crítico la función \(y = f(x) \) alcanza un valor mínimo o un valor máximo de un intervalo.

• En un punto crítico, la primera derivada de una función \(y = f(x) \) se hace cero.

• Estos valores máximos y mínimos relativos de \(y = f(x) \) en \([x_1, x_2]\) se llaman valores críticos de la función.

• Los puntos de inflexión son puntos de la curva, en donde ésta cambie de cóncava a convexa y viceversa.

• En los puntos de inflexión la segunda derivada de una función \(y = f(x) \), se hace cero.

• Las expresiones \(dy \) y \(dx \) se llaman diferenciales de la variable dependiente y la independiente respectivamente.

• La diferencial de la variable dependiente \(y \) es igual al producto de la derivada de la función \(y = f'(x) \) y el diferencial de la variable independiente \(x \).
Actividades

Lengua Española

Conceptos y procedimientos

1. **Explica** qué es un memorándum y cuál es su función.

2. **Escribe** una oración con cada uno de los siguientes latinismos.
 - ipso facto
 - sine qua non

3. **Subraya** en las oraciones del siguiente texto los elementos que funcionan como factores cohesivos. **Determina** en cada caso el tipo de factor.

 Muchas de las personas trabajan simplemente por necesidad. Incluso, la inmensa mayoría lo hace a pesar de que no se siente a gusto con las condiciones en que debe desempeñar su labor. De esa manera, la necesidad es el principal motor que mueve la producción mundial.

4. **Indica** cuáles de los siguientes textos son razonamientos demostrativos y cuáles son dialécticos. Para cada caso, **justifica** tu respuesta.

 Puesto que la necesidad de ganarse el sustento es el principal motivo que empuja a las personas a trabajar, podemos concluir que todo el que trabaja lo hace por necesidad.

5. **Explica** lo que sepas acerca de la vida y la obra de Silvina Ocampo.

6. **Explica** el sentido que tiene para ti la expresión "el trabajo es la mejor vía para la superación personal".

7. **Explica** el valor que tiene para ti el amor por el trabajo.
Ciencias Sociales
Conceptos y procedimientos

1. Responde.
 - ¿Qué es el comercio exterior?

 - ¿Cómo obtiene ingresos el Estado?

 - ¿Qué son los ingresos no tributarios?

 - ¿Qué es la balanza comercial?

2. Contesta verdadero o falso, según corresponda.

 - El mayor gasto del gobierno es el gasto social.

 - El flujo de bienes y servicios comprende sólo las exportaciones nacionales.

 - La República Dominicana cuenta con varios bancos de emisión.

 - El presupuesto es el instrumento que permite al Estado planificar anualmente sus gastos e ingresos.

 - La especialización de un país en la exportación de un bien, se encuentra determinada –entre otras cosas– por sus costumbres.

3. Reflexiona.

 - ¿Cuáles deben ser las prioridades de los gobiernos para realizar los gastos?

 - ¿Cómo ayuda el comercio exterior a desarrollar un país?

 - ¿Crees que es necesaria la banca?

Valores

4. Enumera tres razones por las cuales emigrarías por asuntos laborales.

© Santillana, S.A.
Conceptos y procedimientos

1. Responde.
 - ¿Crees que los arquitectos deben hacer arquitectura teniendo en cuenta que los espacios deben ser agradables para el ser humano? ¿Por qué?

 __
 __
 __
 __
 __

 - ¿Cómo es la ciudad en la que vives o la ciudad que más frecuentes desde el punto de vista ambiental? Explica tu respuesta.

 __
 __
 __
 __
 __

 - Si pudieras cambiar algo en la ciudad en la que vives o en la ciudad que más frecuentes, ¿qué cambiarías? ¿Por qué?

 __
 __
 __
 __
 __

2. Escribe las funciones de cuatro de los edificios que más frecuentes.

 __
 __
 __
 __

3. ¿Crees que la ingeniería de grandes vías para el tráfico de autobuses, vehículos privados y públicos se ha hecho teniendo en cuenta al ser humano? ¿Por qué?

 __
 __
 __
 __

Valores

4. Responde.
 - ¿Conoces alguna tienda que comercialice productos de artesanía nacional? ¿Qué productos vende?

 __
 __
 __
 __
Contesta correctamente:

1. ¿En qué consiste el efecto fotoeléctrico y cuáles son sus principales características?

2. ¿Cuáles son las principales aplicaciones del efecto fotoeléctrico?

3. ¿Cómo se puede interpretar el efecto fotoeléctrico con ayuda de la hipótesis de Planck?

Marca verdadero o falso, justifica tus respuestas.

☐ Las radiaciones de alta frecuencia son las que transportan mayor cantidad de energía.

☐ Cuanto más alejado se encuentra un electrón del núcleo, menor será su energía.

☐ En el efecto fotoeléctrico, la emisión de electrones depende de la intensidad de la luz recibida y es independiente de la frecuencia.

☐ Toda partícula en movimiento lleva asociada una onda.

☐ Las ondas de radio son radiaciones electromagnéticas de alta frecuencia.

Resuelve los siguientes ejercicios.

4. ¿Cuál es la energía de un fotón de radiación ultravioleta cuya frecuencia es de 3×10^{16} Hz?

5. ¿Cuáles son las diferencias entre radiaciones de partículas alfa y de partículas beta teniendo la misma rapidez?

6. Una esfera de 1 kg de masa se mueve con una velocidad constante de 50 km/h. Calcula la longitud de onda asociada a dicha esfera.

7. ¿Cuál es la longitud de la onda asociada a un electrón que se desplaza a 1 000 km/s? (La masa del electrón es de 9.1×10^{-31} kg).

8. Un átomo de hidrógeno se encuentra en un estado excitado, de manera que el electrón tiene una energía $E = -3.4$ eV. Para recuperar su estado original, el átomo emite un fotón, con lo cual el electrón retorna a la posición en la que su energía es $E = -13.6$ eV. ¿Cuál es la longitud de onda de la radiación emitida?

Valores

4. ¿En qué tipo de trabajos sociales te podrías involucrar?
Educación Física

Conceptos y procedimientos

1 Explica los pasos que hay que dar para la estampación en relieve.

1

2

3

4

2 Responde.
• ¿Qué nombre recibe el estampado en relieve?

■ Explica cómo realizarías un collage de estampaciones. Para ello contesta estas preguntas.
• ¿Qué materiales recopilarías?

• ¿Qué harías una vez recogidos estos materiales?

• ¿Con qué presionarías la hoja?

• ¿Qué harás con el material ya estampado?

3 Explica tu experiencia en relación con los aprendizajes de esta unidad.

4 Responde.
¿Qué piensas del grabado en relieve como una forma de trabajo? ¿Te parece interesante? ¿Por qué?
Matemáticas

Conceptos y procedimientos

1. **Determine** la ecuación de la tangente a la curva, en el punto dado.
 - \(y = x^3 + x^2; \ P (1, 2) \)
 - \(y = \sqrt{x + 3}; \ P (1, 2) \)
 - \(y = \sin x; \ P (\pi/6, 1/2) \)
 - \(y = \ln x; \ P (e, 1) \)

2. **Obtén** la ecuación de la recta normal a cada curva dada en el punto especificado.
 - \(y = 1/x^2; \ P (1, 1) \)
 - \(y = x^3 - 5x^2 + 4x; \ P (2, -4) \)
 - \(y = \cos (x + \pi/3); \ P (0, 1/2) \)
 - \(y = (2x + 3)/(2x + 1); \ P (3, 9/7) \)

3. ¿Para qué valor \(x_0 \) se verifica el teorema del valor medio, en el caso de cada una de las siguientes funciones y entre cada par de puntos dados?
 - \(y = x^3 - 3x + 5; \ P_1 (0, 5) \) y \(P_2 (1, 3) \).
 - \(x^3 - 2x; \ P_1 (2, 4) \) y \(P_2 (3, 21) \).
 - \(y = \sqrt{2x + 3}; \ P_1 (-3/2, 0) \) y \(P_2 (13/2, 4) \).
 - \(y = \sin x; \ P_1 (0, 0) \) y \(P_2 (\pi/2, 1) \).

4. **Grafica** la función \(y = x^4 - 4x^3 + 4x^2 + 2 \), en tu cuaderno y **comprueba**, usando la derivada, los intervalos en que esta función es creciente y decreciente.

5. **Obtén** los valores críticos de las siguientes funciones. **Identifica** los mínimos y máximos.
 - \(y = x^2 - x - 6 \)
 - \(y = 2x^2 - x + 1 \)
 - \(y = x^3 + 2x^2 - 4x + 6 \)
 - \(y = x^2 + \sqrt{x} \)

6. **Observa** la gráfica y determina, por aproximaciones sucesivas, los intervalos de concavidad y convexidad de las curvas siguientes.
 - \(y = x^3 - 2x + 1 \).

7. **Obtén** los puntos de inflexión en cada caso.
 - \(y = x^3 - x^2 + 1 \).
 - \(y = (x - 3)^3 + 10 \).
 - \(y = x^4 - 3x^3 - x + 1 \).
 - \(y = \frac{x^5}{5} - \frac{2x^3}{3} \).
 - \(y = \frac{2x}{x^2 + 1} \)

Valores

8. ¿Qué aplicaciones de las derivadas a la práctica productiva puedes identificar?

© Santillana, S.A.